Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007) (Proof shortened by Paul Chapman, 21-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 2 | 1 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 3 | 2 | simp1d | |- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 4 | 3 | 3expia | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) -> x e. RR ) ) |
| 5 | 4 | ssrdv | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |