Metamath Proof Explorer


Theorem iccssre

Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007) (Proof shortened by Paul Chapman, 21-Jan-2008)

Ref Expression
Assertion iccssre
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )

Proof

Step Hyp Ref Expression
1 elicc2
 |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) )
2 1 biimp3a
 |-  ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) )
3 2 simp1d
 |-  ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR )
4 3 3expia
 |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) -> x e. RR ) )
5 4 ssrdv
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )