Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccssred.1 | |- ( ph -> A e. RR ) |
|
iccssred.2 | |- ( ph -> B e. RR ) |
||
Assertion | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssred.1 | |- ( ph -> A e. RR ) |
|
2 | iccssred.2 | |- ( ph -> B e. RR ) |
|
3 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |