Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccssred.1 | |- ( ph -> A e. RR ) |
|
| iccssred.2 | |- ( ph -> B e. RR ) |
||
| Assertion | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssred.1 | |- ( ph -> A e. RR ) |
|
| 2 | iccssred.2 | |- ( ph -> B e. RR ) |
|
| 3 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |