Metamath Proof Explorer


Theorem iccssred

Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccssred.1
|- ( ph -> A e. RR )
iccssred.2
|- ( ph -> B e. RR )
Assertion iccssred
|- ( ph -> ( A [,] B ) C_ RR )

Proof

Step Hyp Ref Expression
1 iccssred.1
 |-  ( ph -> A e. RR )
2 iccssred.2
 |-  ( ph -> B e. RR )
3 iccssre
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A [,] B ) C_ RR )