| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccsuble.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
iccsuble.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
iccsuble.3 |
|- ( ph -> C e. ( A [,] B ) ) |
| 4 |
|
iccsuble.4 |
|- ( ph -> D e. ( A [,] B ) ) |
| 5 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ C e. ( A [,] B ) ) -> C e. RR ) |
| 6 |
1 2 3 5
|
syl3anc |
|- ( ph -> C e. RR ) |
| 7 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ D e. ( A [,] B ) ) -> D e. RR ) |
| 8 |
1 2 4 7
|
syl3anc |
|- ( ph -> D e. RR ) |
| 9 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 11 |
3 10
|
mpbid |
|- ( ph -> ( C e. RR /\ A <_ C /\ C <_ B ) ) |
| 12 |
11
|
simp3d |
|- ( ph -> C <_ B ) |
| 13 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( D e. ( A [,] B ) <-> ( D e. RR /\ A <_ D /\ D <_ B ) ) ) |
| 14 |
1 2 13
|
syl2anc |
|- ( ph -> ( D e. ( A [,] B ) <-> ( D e. RR /\ A <_ D /\ D <_ B ) ) ) |
| 15 |
4 14
|
mpbid |
|- ( ph -> ( D e. RR /\ A <_ D /\ D <_ B ) ) |
| 16 |
15
|
simp2d |
|- ( ph -> A <_ D ) |
| 17 |
6 1 2 8 12 16
|
le2subd |
|- ( ph -> ( C - D ) <_ ( B - A ) ) |