| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 2 |  | sstr |  |-  ( ( S C_ ( A [,] B ) /\ ( A [,] B ) C_ RR ) -> S C_ RR ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( ( A [,] B ) C_ RR /\ S C_ ( A [,] B ) ) -> S C_ RR ) | 
						
							| 4 | 1 3 | sylan |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> S C_ RR ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S C_ RR ) | 
						
							| 6 |  | ne0i |  |-  ( C e. S -> S =/= (/) ) | 
						
							| 7 | 6 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S =/= (/) ) | 
						
							| 8 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> B e. RR ) | 
						
							| 9 |  | ssel |  |-  ( S C_ ( A [,] B ) -> ( y e. S -> y e. ( A [,] B ) ) ) | 
						
							| 10 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) | 
						
							| 12 | 9 11 | sylan9r |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> ( y e. S -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) | 
						
							| 14 | 13 | simp3d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> y <_ B ) | 
						
							| 15 | 14 | ralrimiva |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> A. y e. S y <_ B ) | 
						
							| 16 |  | brralrspcev |  |-  ( ( B e. RR /\ A. y e. S y <_ B ) -> E. x e. RR A. y e. S y <_ x ) | 
						
							| 17 | 8 15 16 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> E. x e. RR A. y e. S y <_ x ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> E. x e. RR A. y e. S y <_ x ) | 
						
							| 19 | 5 7 18 | 3jca |  |-  ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. y e. S y <_ x ) ) |