| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccmbl |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
| 2 |
|
mblvol |
|- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 3 |
1 2
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 4 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 5 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 6 |
|
icc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 8 |
7
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
| 9 |
|
fveq2 |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = ( vol* ` (/) ) ) |
| 10 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
| 11 |
9 10
|
eqtrdi |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = 0 ) |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
11 12
|
eqeltrdi |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 14 |
8 13
|
syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 15 |
|
ovolicc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
| 16 |
15
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
| 17 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 18 |
17
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) |
| 20 |
16 19
|
eqeltrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 21 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 22 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 23 |
14 20 21 22
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 24 |
3 23
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) e. RR ) |