| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sban |
|- ( [ x / b ] ( ph /\ ps ) <-> ( [ x / b ] ph /\ [ x / b ] ps ) ) |
| 2 |
1
|
sbbii |
|- ( [ b / a ] [ x / b ] ( ph /\ ps ) <-> [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) ) |
| 3 |
2
|
sbbii |
|- ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> [ a / x ] [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) ) |
| 4 |
|
sban |
|- ( [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) <-> ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) ) |
| 5 |
4
|
sbbii |
|- ( [ a / x ] [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) <-> [ a / x ] ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) ) |
| 6 |
|
sban |
|- ( [ a / x ] ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) <-> ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) ) |
| 7 |
3 5 6
|
3bitri |
|- ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) ) |
| 8 |
|
pm4.38 |
|- ( ( ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> ( ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) <-> ( ph /\ ps ) ) ) |
| 9 |
7 8
|
bitrid |
|- ( ( ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) |
| 10 |
9
|
alanimi |
|- ( ( A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) |
| 11 |
10
|
alanimi |
|- ( ( A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) |
| 12 |
|
df-ich |
|- ( [ a <> b ] ph <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) ) |
| 13 |
|
df-ich |
|- ( [ a <> b ] ps <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) |
| 14 |
12 13
|
anbi12i |
|- ( ( [ a <> b ] ph /\ [ a <> b ] ps ) <-> ( A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) ) |
| 15 |
|
df-ich |
|- ( [ a <> b ] ( ph /\ ps ) <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) |
| 16 |
11 14 15
|
3imtr4i |
|- ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph /\ ps ) ) |