| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ichbi12i.1 |
|- ( ( x = a /\ y = b ) -> ( ps <-> ch ) ) |
| 2 |
|
nfv |
|- F/ b ps |
| 3 |
2
|
sbco2v |
|- ( [ v / b ] [ b / y ] ps <-> [ v / y ] ps ) |
| 4 |
3
|
bicomi |
|- ( [ v / y ] ps <-> [ v / b ] [ b / y ] ps ) |
| 5 |
4
|
sbbii |
|- ( [ a / x ] [ v / y ] ps <-> [ a / x ] [ v / b ] [ b / y ] ps ) |
| 6 |
|
sbcom2 |
|- ( [ a / x ] [ v / b ] [ b / y ] ps <-> [ v / b ] [ a / x ] [ b / y ] ps ) |
| 7 |
5 6
|
bitri |
|- ( [ a / x ] [ v / y ] ps <-> [ v / b ] [ a / x ] [ b / y ] ps ) |
| 8 |
7
|
sbbii |
|- ( [ u / a ] [ a / x ] [ v / y ] ps <-> [ u / a ] [ v / b ] [ a / x ] [ b / y ] ps ) |
| 9 |
|
nfv |
|- F/ a ps |
| 10 |
9
|
nfsbv |
|- F/ a [ v / y ] ps |
| 11 |
10
|
sbco2v |
|- ( [ u / a ] [ a / x ] [ v / y ] ps <-> [ u / x ] [ v / y ] ps ) |
| 12 |
1
|
2sbievw |
|- ( [ a / x ] [ b / y ] ps <-> ch ) |
| 13 |
12
|
2sbbii |
|- ( [ u / a ] [ v / b ] [ a / x ] [ b / y ] ps <-> [ u / a ] [ v / b ] ch ) |
| 14 |
8 11 13
|
3bitr3i |
|- ( [ u / x ] [ v / y ] ps <-> [ u / a ] [ v / b ] ch ) |
| 15 |
|
sbcom2 |
|- ( [ u / b ] [ a / x ] [ b / y ] ps <-> [ a / x ] [ u / b ] [ b / y ] ps ) |
| 16 |
2
|
sbco2v |
|- ( [ u / b ] [ b / y ] ps <-> [ u / y ] ps ) |
| 17 |
16
|
sbbii |
|- ( [ a / x ] [ u / b ] [ b / y ] ps <-> [ a / x ] [ u / y ] ps ) |
| 18 |
15 17
|
bitri |
|- ( [ u / b ] [ a / x ] [ b / y ] ps <-> [ a / x ] [ u / y ] ps ) |
| 19 |
18
|
sbbii |
|- ( [ v / a ] [ u / b ] [ a / x ] [ b / y ] ps <-> [ v / a ] [ a / x ] [ u / y ] ps ) |
| 20 |
12
|
2sbbii |
|- ( [ v / a ] [ u / b ] [ a / x ] [ b / y ] ps <-> [ v / a ] [ u / b ] ch ) |
| 21 |
9
|
nfsbv |
|- F/ a [ u / y ] ps |
| 22 |
21
|
sbco2v |
|- ( [ v / a ] [ a / x ] [ u / y ] ps <-> [ v / x ] [ u / y ] ps ) |
| 23 |
19 20 22
|
3bitr3ri |
|- ( [ v / x ] [ u / y ] ps <-> [ v / a ] [ u / b ] ch ) |
| 24 |
14 23
|
bibi12i |
|- ( ( [ u / x ] [ v / y ] ps <-> [ v / x ] [ u / y ] ps ) <-> ( [ u / a ] [ v / b ] ch <-> [ v / a ] [ u / b ] ch ) ) |
| 25 |
24
|
2albii |
|- ( A. u A. v ( [ u / x ] [ v / y ] ps <-> [ v / x ] [ u / y ] ps ) <-> A. u A. v ( [ u / a ] [ v / b ] ch <-> [ v / a ] [ u / b ] ch ) ) |
| 26 |
|
dfich2 |
|- ( [ x <> y ] ps <-> A. u A. v ( [ u / x ] [ v / y ] ps <-> [ v / x ] [ u / y ] ps ) ) |
| 27 |
|
dfich2 |
|- ( [ a <> b ] ch <-> A. u A. v ( [ u / a ] [ v / b ] ch <-> [ v / a ] [ u / b ] ch ) ) |
| 28 |
25 26 27
|
3bitr4i |
|- ( [ x <> y ] ps <-> [ a <> b ] ch ) |