| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alcom |
|- ( A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) ) |
| 2 |
|
sbcom2 |
|- ( [ b / x ] [ a / y ] ps <-> [ a / y ] [ b / x ] ps ) |
| 3 |
|
sbcom2 |
|- ( [ a / x ] [ b / y ] ps <-> [ b / y ] [ a / x ] ps ) |
| 4 |
2 3
|
bibi12i |
|- ( ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) |
| 5 |
4
|
2albii |
|- ( A. a A. b ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) |
| 6 |
1 5
|
bitri |
|- ( A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) |
| 7 |
|
dfich2 |
|- ( [ x <> y ] ps <-> A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) ) |
| 8 |
|
dfich2 |
|- ( [ y <> x ] ps <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) |
| 9 |
6 7 8
|
3bitr4i |
|- ( [ x <> y ] ps <-> [ y <> x ] ps ) |