| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1w |
|- ( a = t -> ( a e. CC <-> t e. CC ) ) |
| 2 |
1
|
3anbi1d |
|- ( a = t -> ( ( a e. CC /\ b e. CC /\ c e. CC ) <-> ( t e. CC /\ b e. CC /\ c e. CC ) ) ) |
| 3 |
|
oveq1 |
|- ( a = t -> ( a ^ 2 ) = ( t ^ 2 ) ) |
| 4 |
3
|
oveq1d |
|- ( a = t -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( ( t ^ 2 ) + ( b ^ 2 ) ) ) |
| 5 |
4
|
eqeq1d |
|- ( a = t -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) <-> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 6 |
2 5
|
imbi12d |
|- ( a = t -> ( ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( t e. CC /\ b e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) ) |
| 7 |
|
eleq1w |
|- ( b = a -> ( b e. CC <-> a e. CC ) ) |
| 8 |
7
|
3anbi2d |
|- ( b = a -> ( ( t e. CC /\ b e. CC /\ c e. CC ) <-> ( t e. CC /\ a e. CC /\ c e. CC ) ) ) |
| 9 |
|
oveq1 |
|- ( b = a -> ( b ^ 2 ) = ( a ^ 2 ) ) |
| 10 |
9
|
oveq2d |
|- ( b = a -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( ( t ^ 2 ) + ( a ^ 2 ) ) ) |
| 11 |
10
|
eqeq1d |
|- ( b = a -> ( ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) <-> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 12 |
8 11
|
imbi12d |
|- ( b = a -> ( ( ( t e. CC /\ b e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) ) |
| 13 |
|
eleq1w |
|- ( t = b -> ( t e. CC <-> b e. CC ) ) |
| 14 |
13
|
3anbi1d |
|- ( t = b -> ( ( t e. CC /\ a e. CC /\ c e. CC ) <-> ( b e. CC /\ a e. CC /\ c e. CC ) ) ) |
| 15 |
|
oveq1 |
|- ( t = b -> ( t ^ 2 ) = ( b ^ 2 ) ) |
| 16 |
15
|
oveq1d |
|- ( t = b -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( ( b ^ 2 ) + ( a ^ 2 ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( t = b -> ( ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) <-> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 18 |
14 17
|
imbi12d |
|- ( t = b -> ( ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) ) |
| 19 |
|
3ancoma |
|- ( ( b e. CC /\ a e. CC /\ c e. CC ) <-> ( a e. CC /\ b e. CC /\ c e. CC ) ) |
| 20 |
19
|
imbi1i |
|- ( ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 21 |
|
sqcl |
|- ( b e. CC -> ( b ^ 2 ) e. CC ) |
| 22 |
21
|
3ad2ant2 |
|- ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( b ^ 2 ) e. CC ) |
| 23 |
|
sqcl |
|- ( a e. CC -> ( a ^ 2 ) e. CC ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( a ^ 2 ) e. CC ) |
| 25 |
22 24
|
addcomd |
|- ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 26 |
25
|
eqeq1d |
|- ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) <-> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 27 |
26
|
pm5.74i |
|- ( ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 28 |
20 27
|
bitri |
|- ( ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) |
| 29 |
18 28
|
bitrdi |
|- ( t = b -> ( ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) ) |
| 30 |
6 12 29
|
ichcircshi |
|- [ a <> b ] ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) |