| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( p = <. x , y >. -> ( p = <. a , b >. <-> <. x , y >. = <. a , b >. ) ) |
| 2 |
1
|
anbi1d |
|- ( p = <. x , y >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. x , y >. = <. a , b >. /\ ph ) ) ) |
| 3 |
2
|
2exbidv |
|- ( p = <. x , y >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) ) ) |
| 4 |
|
eqeq1 |
|- ( p = <. v , w >. -> ( p = <. a , b >. <-> <. v , w >. = <. a , b >. ) ) |
| 5 |
4
|
anbi1d |
|- ( p = <. v , w >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. v , w >. = <. a , b >. /\ ph ) ) ) |
| 6 |
5
|
2exbidv |
|- ( p = <. v , w >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) ) ) |
| 7 |
3 6
|
reuop |
|- ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) <-> E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) |
| 8 |
|
nfich1 |
|- F/ a [ a <> b ] ph |
| 9 |
|
nfv |
|- F/ a ( x e. X /\ y e. X ) |
| 10 |
8 9
|
nfan |
|- F/ a ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) |
| 11 |
|
nfcv |
|- F/_ a X |
| 12 |
|
nfe1 |
|- F/ a E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) |
| 13 |
|
nfv |
|- F/ a <. v , w >. = <. x , y >. |
| 14 |
12 13
|
nfim |
|- F/ a ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 15 |
11 14
|
nfralw |
|- F/ a A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 16 |
11 15
|
nfralw |
|- F/ a A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 17 |
|
nfe1 |
|- F/ a E. a E. b ( a = b /\ ph ) |
| 18 |
16 17
|
nfim |
|- F/ a ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) |
| 19 |
|
nfich2 |
|- F/ b [ a <> b ] ph |
| 20 |
|
nfv |
|- F/ b ( x e. X /\ y e. X ) |
| 21 |
19 20
|
nfan |
|- F/ b ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) |
| 22 |
|
nfcv |
|- F/_ b X |
| 23 |
|
nfe1 |
|- F/ b E. b ( <. v , w >. = <. a , b >. /\ ph ) |
| 24 |
23
|
nfex |
|- F/ b E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) |
| 25 |
|
nfv |
|- F/ b <. v , w >. = <. x , y >. |
| 26 |
24 25
|
nfim |
|- F/ b ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 27 |
22 26
|
nfralw |
|- F/ b A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 28 |
22 27
|
nfralw |
|- F/ b A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) |
| 29 |
|
nfe1 |
|- F/ b E. b ( a = b /\ ph ) |
| 30 |
29
|
nfex |
|- F/ b E. a E. b ( a = b /\ ph ) |
| 31 |
28 30
|
nfim |
|- F/ b ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) |
| 32 |
|
opeq12 |
|- ( ( v = y /\ w = x ) -> <. v , w >. = <. y , x >. ) |
| 33 |
32
|
eqeq1d |
|- ( ( v = y /\ w = x ) -> ( <. v , w >. = <. a , b >. <-> <. y , x >. = <. a , b >. ) ) |
| 34 |
33
|
anbi1d |
|- ( ( v = y /\ w = x ) -> ( ( <. v , w >. = <. a , b >. /\ ph ) <-> ( <. y , x >. = <. a , b >. /\ ph ) ) ) |
| 35 |
34
|
2exbidv |
|- ( ( v = y /\ w = x ) -> ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) ) ) |
| 36 |
32
|
eqeq1d |
|- ( ( v = y /\ w = x ) -> ( <. v , w >. = <. x , y >. <-> <. y , x >. = <. x , y >. ) ) |
| 37 |
35 36
|
imbi12d |
|- ( ( v = y /\ w = x ) -> ( ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) <-> ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) ) ) |
| 38 |
37
|
rspc2gv |
|- ( ( y e. X /\ x e. X ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) ) ) |
| 39 |
38
|
ancoms |
|- ( ( x e. X /\ y e. X ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) ) ) |
| 40 |
39
|
adantl |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) ) ) |
| 41 |
|
simprr |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
| 42 |
41
|
adantr |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> y e. X ) |
| 43 |
|
simpl |
|- ( ( x e. X /\ y e. X ) -> x e. X ) |
| 44 |
43
|
adantl |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
| 45 |
44
|
adantr |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> x e. X ) |
| 46 |
|
eqidd |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> <. y , x >. = <. y , x >. ) |
| 47 |
|
vex |
|- x e. _V |
| 48 |
|
vex |
|- y e. _V |
| 49 |
47 48
|
opth |
|- ( <. x , y >. = <. a , b >. <-> ( x = a /\ y = b ) ) |
| 50 |
|
sbceq1a |
|- ( b = y -> ( ph <-> [. y / b ]. ph ) ) |
| 51 |
50
|
equcoms |
|- ( y = b -> ( ph <-> [. y / b ]. ph ) ) |
| 52 |
|
sbceq1a |
|- ( a = x -> ( [. y / b ]. ph <-> [. x / a ]. [. y / b ]. ph ) ) |
| 53 |
52
|
equcoms |
|- ( x = a -> ( [. y / b ]. ph <-> [. x / a ]. [. y / b ]. ph ) ) |
| 54 |
51 53
|
sylan9bbr |
|- ( ( x = a /\ y = b ) -> ( ph <-> [. x / a ]. [. y / b ]. ph ) ) |
| 55 |
|
dfich2 |
|- ( [ a <> b ] ph <-> A. x A. y ( [ x / a ] [ y / b ] ph <-> [ y / a ] [ x / b ] ph ) ) |
| 56 |
|
2sp |
|- ( A. x A. y ( [ x / a ] [ y / b ] ph <-> [ y / a ] [ x / b ] ph ) -> ( [ x / a ] [ y / b ] ph <-> [ y / a ] [ x / b ] ph ) ) |
| 57 |
|
sbsbc |
|- ( [ y / b ] ph <-> [. y / b ]. ph ) |
| 58 |
57
|
sbbii |
|- ( [ x / a ] [ y / b ] ph <-> [ x / a ] [. y / b ]. ph ) |
| 59 |
|
sbsbc |
|- ( [ x / a ] [. y / b ]. ph <-> [. x / a ]. [. y / b ]. ph ) |
| 60 |
58 59
|
bitri |
|- ( [ x / a ] [ y / b ] ph <-> [. x / a ]. [. y / b ]. ph ) |
| 61 |
|
sbsbc |
|- ( [ x / b ] ph <-> [. x / b ]. ph ) |
| 62 |
61
|
sbbii |
|- ( [ y / a ] [ x / b ] ph <-> [ y / a ] [. x / b ]. ph ) |
| 63 |
|
sbsbc |
|- ( [ y / a ] [. x / b ]. ph <-> [. y / a ]. [. x / b ]. ph ) |
| 64 |
62 63
|
bitri |
|- ( [ y / a ] [ x / b ] ph <-> [. y / a ]. [. x / b ]. ph ) |
| 65 |
56 60 64
|
3bitr3g |
|- ( A. x A. y ( [ x / a ] [ y / b ] ph <-> [ y / a ] [ x / b ] ph ) -> ( [. x / a ]. [. y / b ]. ph <-> [. y / a ]. [. x / b ]. ph ) ) |
| 66 |
55 65
|
sylbi |
|- ( [ a <> b ] ph -> ( [. x / a ]. [. y / b ]. ph <-> [. y / a ]. [. x / b ]. ph ) ) |
| 67 |
66
|
biimpd |
|- ( [ a <> b ] ph -> ( [. x / a ]. [. y / b ]. ph -> [. y / a ]. [. x / b ]. ph ) ) |
| 68 |
67
|
adantr |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( [. x / a ]. [. y / b ]. ph -> [. y / a ]. [. x / b ]. ph ) ) |
| 69 |
68
|
com12 |
|- ( [. x / a ]. [. y / b ]. ph -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. y / a ]. [. x / b ]. ph ) ) |
| 70 |
54 69
|
biimtrdi |
|- ( ( x = a /\ y = b ) -> ( ph -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. y / a ]. [. x / b ]. ph ) ) ) |
| 71 |
49 70
|
sylbi |
|- ( <. x , y >. = <. a , b >. -> ( ph -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. y / a ]. [. x / b ]. ph ) ) ) |
| 72 |
71
|
imp |
|- ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. y / a ]. [. x / b ]. ph ) ) |
| 73 |
72
|
impcom |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> [. y / a ]. [. x / b ]. ph ) |
| 74 |
|
sbccom |
|- ( [. x / b ]. [. y / a ]. ph <-> [. y / a ]. [. x / b ]. ph ) |
| 75 |
73 74
|
sylibr |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> [. x / b ]. [. y / a ]. ph ) |
| 76 |
46 75
|
jca |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> ( <. y , x >. = <. y , x >. /\ [. x / b ]. [. y / a ]. ph ) ) |
| 77 |
|
nfcv |
|- F/_ b x |
| 78 |
|
nfv |
|- F/ b <. y , x >. = <. y , x >. |
| 79 |
|
nfsbc1v |
|- F/ b [. x / b ]. [. y / a ]. ph |
| 80 |
78 79
|
nfan |
|- F/ b ( <. y , x >. = <. y , x >. /\ [. x / b ]. [. y / a ]. ph ) |
| 81 |
|
opeq2 |
|- ( b = x -> <. y , b >. = <. y , x >. ) |
| 82 |
81
|
eqeq2d |
|- ( b = x -> ( <. y , x >. = <. y , b >. <-> <. y , x >. = <. y , x >. ) ) |
| 83 |
|
sbceq1a |
|- ( b = x -> ( [. y / a ]. ph <-> [. x / b ]. [. y / a ]. ph ) ) |
| 84 |
82 83
|
anbi12d |
|- ( b = x -> ( ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) <-> ( <. y , x >. = <. y , x >. /\ [. x / b ]. [. y / a ]. ph ) ) ) |
| 85 |
77 80 84
|
spcegf |
|- ( x e. X -> ( ( <. y , x >. = <. y , x >. /\ [. x / b ]. [. y / a ]. ph ) -> E. b ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) ) ) |
| 86 |
45 76 85
|
sylc |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> E. b ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) ) |
| 87 |
|
nfcv |
|- F/_ a y |
| 88 |
|
nfv |
|- F/ a <. y , x >. = <. y , b >. |
| 89 |
|
nfsbc1v |
|- F/ a [. y / a ]. ph |
| 90 |
88 89
|
nfan |
|- F/ a ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) |
| 91 |
90
|
nfex |
|- F/ a E. b ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) |
| 92 |
|
opeq1 |
|- ( a = y -> <. a , b >. = <. y , b >. ) |
| 93 |
92
|
eqeq2d |
|- ( a = y -> ( <. y , x >. = <. a , b >. <-> <. y , x >. = <. y , b >. ) ) |
| 94 |
|
sbceq1a |
|- ( a = y -> ( ph <-> [. y / a ]. ph ) ) |
| 95 |
93 94
|
anbi12d |
|- ( a = y -> ( ( <. y , x >. = <. a , b >. /\ ph ) <-> ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) ) ) |
| 96 |
95
|
exbidv |
|- ( a = y -> ( E. b ( <. y , x >. = <. a , b >. /\ ph ) <-> E. b ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) ) ) |
| 97 |
87 91 96
|
spcegf |
|- ( y e. X -> ( E. b ( <. y , x >. = <. y , b >. /\ [. y / a ]. ph ) -> E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) ) ) |
| 98 |
42 86 97
|
sylc |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) ) |
| 99 |
|
simpl |
|- ( ( y = x /\ ( x = a /\ y = b ) ) -> y = x ) |
| 100 |
|
simprr |
|- ( ( y = x /\ ( x = a /\ y = b ) ) -> y = b ) |
| 101 |
|
simpl |
|- ( ( x = a /\ y = b ) -> x = a ) |
| 102 |
101
|
adantl |
|- ( ( y = x /\ ( x = a /\ y = b ) ) -> x = a ) |
| 103 |
99 100 102
|
3eqtr3rd |
|- ( ( y = x /\ ( x = a /\ y = b ) ) -> a = b ) |
| 104 |
103
|
anim1i |
|- ( ( ( y = x /\ ( x = a /\ y = b ) ) /\ ph ) -> ( a = b /\ ph ) ) |
| 105 |
104
|
exp31 |
|- ( y = x -> ( ( x = a /\ y = b ) -> ( ph -> ( a = b /\ ph ) ) ) ) |
| 106 |
49 105
|
biimtrid |
|- ( y = x -> ( <. x , y >. = <. a , b >. -> ( ph -> ( a = b /\ ph ) ) ) ) |
| 107 |
106
|
impd |
|- ( y = x -> ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( a = b /\ ph ) ) ) |
| 108 |
48 47
|
opth1 |
|- ( <. y , x >. = <. x , y >. -> y = x ) |
| 109 |
107 108
|
syl11 |
|- ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( <. y , x >. = <. x , y >. -> ( a = b /\ ph ) ) ) |
| 110 |
109
|
adantl |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> ( <. y , x >. = <. x , y >. -> ( a = b /\ ph ) ) ) |
| 111 |
110
|
imp |
|- ( ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) /\ <. y , x >. = <. x , y >. ) -> ( a = b /\ ph ) ) |
| 112 |
111
|
19.8ad |
|- ( ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) /\ <. y , x >. = <. x , y >. ) -> E. b ( a = b /\ ph ) ) |
| 113 |
112
|
19.8ad |
|- ( ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) /\ <. y , x >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) |
| 114 |
113
|
ex |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> ( <. y , x >. = <. x , y >. -> E. a E. b ( a = b /\ ph ) ) ) |
| 115 |
98 114
|
embantd |
|- ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. a , b >. /\ ph ) ) -> ( ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) ) |
| 116 |
115
|
ex |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( ( E. a E. b ( <. y , x >. = <. a , b >. /\ ph ) -> <. y , x >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) ) ) |
| 117 |
40 116
|
syl5d |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) ) ) |
| 118 |
21 31 117
|
exlimd |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) ) ) |
| 119 |
10 18 118
|
exlimd |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) -> E. a E. b ( a = b /\ ph ) ) ) ) |
| 120 |
119
|
impd |
|- ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) ) -> E. a E. b ( a = b /\ ph ) ) ) |
| 121 |
120
|
rexlimdvva |
|- ( [ a <> b ] ph -> ( E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ ph ) -> <. v , w >. = <. x , y >. ) ) -> E. a E. b ( a = b /\ ph ) ) ) |
| 122 |
7 121
|
biimtrid |
|- ( [ a <> b ] ph -> ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) -> E. a E. b ( a = b /\ ph ) ) ) |