Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
1xr |
|- 1 e. RR* |
3 |
|
icossre |
|- ( ( 0 e. RR /\ 1 e. RR* ) -> ( 0 [,) 1 ) C_ RR ) |
4 |
1 2 3
|
mp2an |
|- ( 0 [,) 1 ) C_ RR |
5 |
4
|
sseli |
|- ( A e. ( 0 [,) 1 ) -> A e. RR ) |
6 |
|
0xr |
|- 0 e. RR* |
7 |
|
elico1 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( A e. ( 0 [,) 1 ) <-> ( A e. RR* /\ 0 <_ A /\ A < 1 ) ) ) |
8 |
6 2 7
|
mp2an |
|- ( A e. ( 0 [,) 1 ) <-> ( A e. RR* /\ 0 <_ A /\ A < 1 ) ) |
9 |
8
|
simp2bi |
|- ( A e. ( 0 [,) 1 ) -> 0 <_ A ) |
10 |
8
|
simp3bi |
|- ( A e. ( 0 [,) 1 ) -> A < 1 ) |
11 |
|
recn |
|- ( A e. RR -> A e. CC ) |
12 |
11
|
addid2d |
|- ( A e. RR -> ( 0 + A ) = A ) |
13 |
12
|
fveqeq2d |
|- ( A e. RR -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( |_ ` A ) = 0 ) ) |
14 |
|
0z |
|- 0 e. ZZ |
15 |
|
flbi2 |
|- ( ( 0 e. ZZ /\ A e. RR ) -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
16 |
14 15
|
mpan |
|- ( A e. RR -> ( ( |_ ` ( 0 + A ) ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
17 |
13 16
|
bitr3d |
|- ( A e. RR -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < 1 ) ) ) |
18 |
17
|
biimpar |
|- ( ( A e. RR /\ ( 0 <_ A /\ A < 1 ) ) -> ( |_ ` A ) = 0 ) |
19 |
5 9 10 18
|
syl12anc |
|- ( A e. ( 0 [,) 1 ) -> ( |_ ` A ) = 0 ) |