Step |
Hyp |
Ref |
Expression |
1 |
|
icocncflimc.a |
|- ( ph -> A e. RR ) |
2 |
|
icocncflimc.b |
|- ( ph -> B e. RR* ) |
3 |
|
icocncflimc.altb |
|- ( ph -> A < B ) |
4 |
|
icocncflimc.f |
|- ( ph -> F e. ( ( A [,) B ) -cn-> CC ) ) |
5 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
6 |
1
|
leidd |
|- ( ph -> A <_ A ) |
7 |
5 2 5 6 3
|
elicod |
|- ( ph -> A e. ( A [,) B ) ) |
8 |
4 7
|
cnlimci |
|- ( ph -> ( F ` A ) e. ( F limCC A ) ) |
9 |
|
cncfrss |
|- ( F e. ( ( A [,) B ) -cn-> CC ) -> ( A [,) B ) C_ CC ) |
10 |
4 9
|
syl |
|- ( ph -> ( A [,) B ) C_ CC ) |
11 |
|
ssid |
|- CC C_ CC |
12 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
13 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) |
14 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) |
15 |
12 13 14
|
cncfcn |
|- ( ( ( A [,) B ) C_ CC /\ CC C_ CC ) -> ( ( A [,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
16 |
10 11 15
|
sylancl |
|- ( ph -> ( ( A [,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
17 |
4 16
|
eleqtrd |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
18 |
12
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
19 |
18
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
20 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A [,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. ( TopOn ` ( A [,) B ) ) ) |
21 |
19 10 20
|
syl2anc |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. ( TopOn ` ( A [,) B ) ) ) |
22 |
12
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
23 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
24 |
23
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
25 |
22 24
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
26 |
25
|
cnfldtopon |
|- ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) |
27 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. ( TopOn ` ( A [,) B ) ) /\ ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A [,) B ) --> CC /\ A. x e. ( A [,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
28 |
21 26 27
|
sylancl |
|- ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A [,) B ) --> CC /\ A. x e. ( A [,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
29 |
17 28
|
mpbid |
|- ( ph -> ( F : ( A [,) B ) --> CC /\ A. x e. ( A [,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) |
30 |
29
|
simpld |
|- ( ph -> F : ( A [,) B ) --> CC ) |
31 |
|
ioossico |
|- ( A (,) B ) C_ ( A [,) B ) |
32 |
31
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,) B ) ) |
33 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) |
34 |
1
|
recnd |
|- ( ph -> A e. CC ) |
35 |
23
|
ntrtop |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
36 |
22 35
|
ax-mp |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
37 |
|
undif |
|- ( ( A [,) B ) C_ CC <-> ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) = CC ) |
38 |
10 37
|
sylib |
|- ( ph -> ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) = CC ) |
39 |
38
|
eqcomd |
|- ( ph -> CC = ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) |
40 |
39
|
fveq2d |
|- ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) ) |
41 |
36 40
|
eqtr3id |
|- ( ph -> CC = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) ) |
42 |
34 41
|
eleqtrd |
|- ( ph -> A e. ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) ) |
43 |
42 7
|
elind |
|- ( ph -> A e. ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) i^i ( A [,) B ) ) ) |
44 |
22
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
45 |
|
ssid |
|- ( A [,) B ) C_ ( A [,) B ) |
46 |
45
|
a1i |
|- ( ph -> ( A [,) B ) C_ ( A [,) B ) ) |
47 |
23 13
|
restntr |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) C_ CC /\ ( A [,) B ) C_ ( A [,) B ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) i^i ( A [,) B ) ) ) |
48 |
44 10 46 47
|
syl3anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A [,) B ) u. ( CC \ ( A [,) B ) ) ) ) i^i ( A [,) B ) ) ) |
49 |
43 48
|
eleqtrrd |
|- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) ` ( A [,) B ) ) ) |
50 |
7
|
snssd |
|- ( ph -> { A } C_ ( A [,) B ) ) |
51 |
|
ssequn2 |
|- ( { A } C_ ( A [,) B ) <-> ( ( A [,) B ) u. { A } ) = ( A [,) B ) ) |
52 |
50 51
|
sylib |
|- ( ph -> ( ( A [,) B ) u. { A } ) = ( A [,) B ) ) |
53 |
52
|
eqcomd |
|- ( ph -> ( A [,) B ) = ( ( A [,) B ) u. { A } ) ) |
54 |
53
|
oveq2d |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) ) |
55 |
54
|
fveq2d |
|- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) ) ) |
56 |
|
snunioo1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
57 |
5 2 3 56
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
58 |
57
|
eqcomd |
|- ( ph -> ( A [,) B ) = ( ( A (,) B ) u. { A } ) ) |
59 |
55 58
|
fveq12d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) ` ( A [,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
60 |
49 59
|
eleqtrd |
|- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,) B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
61 |
30 32 10 12 33 60
|
limcres |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC A ) = ( F limCC A ) ) |
62 |
8 61
|
eleqtrrd |
|- ( ph -> ( F ` A ) e. ( ( F |` ( A (,) B ) ) limCC A ) ) |