Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) <-> ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
2 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
3 |
2
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
4 |
3
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) |
5 |
4
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) |
6 |
5
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> x < B ) |
7 |
|
elico1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
8 |
7
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
9 |
8
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x < C ) ) |
10 |
9
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B <_ x ) |
11 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B e. RR* ) |
12 |
9
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> x e. RR* ) |
13 |
11 12
|
xrlenltd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( B <_ x <-> -. x < B ) ) |
14 |
10 13
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> -. x < B ) |
15 |
14
|
adantrl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> -. x < B ) |
16 |
6 15
|
pm2.65da |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
17 |
16
|
pm2.21d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) -> x e. (/) ) ) |
18 |
1 17
|
syl5bi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) -> x e. (/) ) ) |
19 |
18
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) ) |
20 |
|
ss0 |
|- ( ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |
21 |
19 20
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |