| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) <-> ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) | 
						
							| 2 |  | elico1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) | 
						
							| 4 | 3 | biimpa |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) | 
						
							| 5 | 4 | simp3d |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) | 
						
							| 6 | 5 | adantrr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> x < B ) | 
						
							| 7 |  | elico1 |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x < C ) ) | 
						
							| 10 | 9 | simp2d |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B <_ x ) | 
						
							| 11 |  | simpl2 |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B e. RR* ) | 
						
							| 12 | 9 | simp1d |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> x e. RR* ) | 
						
							| 13 | 11 12 | xrlenltd |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( B <_ x <-> -. x < B ) ) | 
						
							| 14 | 10 13 | mpbid |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> -. x < B ) | 
						
							| 15 | 14 | adantrl |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> -. x < B ) | 
						
							| 16 | 6 15 | pm2.65da |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) | 
						
							| 17 | 16 | pm2.21d |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) -> x e. (/) ) ) | 
						
							| 18 | 1 17 | biimtrid |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) -> x e. (/) ) ) | 
						
							| 19 | 18 | ssrdv |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) ) | 
						
							| 20 |  | ss0 |  |-  ( ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |