Metamath Proof Explorer


Theorem icogelb

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion icogelb
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,) B ) ) -> A <_ C )

Proof

Step Hyp Ref Expression
1 elico1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) )
2 simp2
 |-  ( ( C e. RR* /\ A <_ C /\ C < B ) -> A <_ C )
3 1 2 syl6bi
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) -> A <_ C ) )
4 3 3impia
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,) B ) ) -> A <_ C )