Metamath Proof Explorer


Theorem icogelbd

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses icogelbd.1
|- ( ph -> A e. RR* )
icogelbd.2
|- ( ph -> B e. RR* )
icogelbd.3
|- ( ph -> C e. ( A [,) B ) )
Assertion icogelbd
|- ( ph -> A <_ C )

Proof

Step Hyp Ref Expression
1 icogelbd.1
 |-  ( ph -> A e. RR* )
2 icogelbd.2
 |-  ( ph -> B e. RR* )
3 icogelbd.3
 |-  ( ph -> C e. ( A [,) B ) )
4 icogelb
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,) B ) ) -> A <_ C )
5 1 2 3 4 syl3anc
 |-  ( ph -> A <_ C )