| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom |  |-  ( ( B [,) +oo ) u. ( A [,) B ) ) = ( ( A [,) B ) u. ( B [,) +oo ) ) | 
						
							| 2 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A e. RR* ) | 
						
							| 4 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B e. RR* ) | 
						
							| 5 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 6 | 5 | a1i |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) | 
						
							| 7 |  | xrltle |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) | 
						
							| 8 | 2 7 | sylan |  |-  ( ( A e. RR /\ B e. RR* ) -> ( A < B -> A <_ B ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A <_ B ) | 
						
							| 10 |  | pnfge |  |-  ( B e. RR* -> B <_ +oo ) | 
						
							| 11 | 4 10 | syl |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) | 
						
							| 12 |  | icoun |  |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A <_ B /\ B <_ +oo ) ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) | 
						
							| 13 | 3 4 6 9 11 12 | syl32anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) | 
						
							| 14 | 1 13 | eqtrid |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) ) | 
						
							| 15 |  | ssun1 |  |-  ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( A [,) B ) ) | 
						
							| 16 | 15 14 | sseqtrid |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) | 
						
							| 17 |  | incom |  |-  ( ( B [,) +oo ) i^i ( A [,) B ) ) = ( ( A [,) B ) i^i ( B [,) +oo ) ) | 
						
							| 18 |  | icodisj |  |-  ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) | 
						
							| 19 | 5 18 | mp3an3 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) | 
						
							| 20 | 3 4 19 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) | 
						
							| 21 | 17 20 | eqtrid |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) | 
						
							| 22 |  | uneqdifeq |  |-  ( ( ( B [,) +oo ) C_ ( A [,) +oo ) /\ ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) | 
						
							| 23 | 16 21 22 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) | 
						
							| 24 | 14 23 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) | 
						
							| 25 |  | icombl1 |  |-  ( A e. RR -> ( A [,) +oo ) e. dom vol ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) +oo ) e. dom vol ) | 
						
							| 27 |  | xrleloe |  |-  ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) | 
						
							| 28 | 4 6 27 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) | 
						
							| 29 | 11 28 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A < B ) | 
						
							| 31 |  | xrre2 |  |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) | 
						
							| 32 | 31 | expr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) | 
						
							| 33 | 3 4 6 30 32 | syl31anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) | 
						
							| 34 | 33 | orim1d |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) | 
						
							| 35 | 29 34 | mpd |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) | 
						
							| 36 |  | icombl1 |  |-  ( B e. RR -> ( B [,) +oo ) e. dom vol ) | 
						
							| 37 |  | oveq1 |  |-  ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) | 
						
							| 38 |  | pnfge |  |-  ( +oo e. RR* -> +oo <_ +oo ) | 
						
							| 39 | 5 38 | ax-mp |  |-  +oo <_ +oo | 
						
							| 40 |  | ico0 |  |-  ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) | 
						
							| 41 | 5 5 40 | mp2an |  |-  ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) | 
						
							| 42 | 39 41 | mpbir |  |-  ( +oo [,) +oo ) = (/) | 
						
							| 43 | 37 42 | eqtrdi |  |-  ( B = +oo -> ( B [,) +oo ) = (/) ) | 
						
							| 44 |  | 0mbl |  |-  (/) e. dom vol | 
						
							| 45 | 43 44 | eqeltrdi |  |-  ( B = +oo -> ( B [,) +oo ) e. dom vol ) | 
						
							| 46 | 36 45 | jaoi |  |-  ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) | 
						
							| 47 | 35 46 | syl |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) | 
						
							| 48 |  | difmbl |  |-  ( ( ( A [,) +oo ) e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) | 
						
							| 49 | 26 47 48 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) | 
						
							| 50 | 24 49 | eqeltrrd |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) B ) e. dom vol ) | 
						
							| 51 |  | ico0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) | 
						
							| 52 | 2 51 | sylan |  |-  ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) | 
						
							| 53 |  | simpr |  |-  ( ( A e. RR /\ B e. RR* ) -> B e. RR* ) | 
						
							| 54 | 2 | adantr |  |-  ( ( A e. RR /\ B e. RR* ) -> A e. RR* ) | 
						
							| 55 | 53 54 | xrlenltd |  |-  ( ( A e. RR /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) | 
						
							| 56 | 52 55 | bitrd |  |-  ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> -. A < B ) ) | 
						
							| 57 | 56 | biimpar |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) = (/) ) | 
						
							| 58 | 57 44 | eqeltrdi |  |-  ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) e. dom vol ) | 
						
							| 59 | 50 58 | pm2.61dan |  |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |