Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
2
|
a1i |
|- ( A e. RR -> +oo e. RR* ) |
4 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
5 |
|
snunioo |
|- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) |
6 |
1 3 4 5
|
syl3anc |
|- ( A e. RR -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) |
7 |
|
snssi |
|- ( A e. RR -> { A } C_ RR ) |
8 |
|
ovolsn |
|- ( A e. RR -> ( vol* ` { A } ) = 0 ) |
9 |
|
nulmbl |
|- ( ( { A } C_ RR /\ ( vol* ` { A } ) = 0 ) -> { A } e. dom vol ) |
10 |
7 8 9
|
syl2anc |
|- ( A e. RR -> { A } e. dom vol ) |
11 |
|
ioombl1 |
|- ( A e. RR* -> ( A (,) +oo ) e. dom vol ) |
12 |
1 11
|
syl |
|- ( A e. RR -> ( A (,) +oo ) e. dom vol ) |
13 |
|
unmbl |
|- ( ( { A } e. dom vol /\ ( A (,) +oo ) e. dom vol ) -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) |
14 |
10 12 13
|
syl2anc |
|- ( A e. RR -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) |
15 |
6 14
|
eqeltrrd |
|- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |