| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 2 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 3 | 2 | a1i |  |-  ( A e. RR -> +oo e. RR* ) | 
						
							| 4 |  | ltpnf |  |-  ( A e. RR -> A < +oo ) | 
						
							| 5 |  | snunioo |  |-  ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) | 
						
							| 6 | 1 3 4 5 | syl3anc |  |-  ( A e. RR -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) | 
						
							| 7 |  | snssi |  |-  ( A e. RR -> { A } C_ RR ) | 
						
							| 8 |  | ovolsn |  |-  ( A e. RR -> ( vol* ` { A } ) = 0 ) | 
						
							| 9 |  | nulmbl |  |-  ( ( { A } C_ RR /\ ( vol* ` { A } ) = 0 ) -> { A } e. dom vol ) | 
						
							| 10 | 7 8 9 | syl2anc |  |-  ( A e. RR -> { A } e. dom vol ) | 
						
							| 11 |  | ioombl1 |  |-  ( A e. RR* -> ( A (,) +oo ) e. dom vol ) | 
						
							| 12 | 1 11 | syl |  |-  ( A e. RR -> ( A (,) +oo ) e. dom vol ) | 
						
							| 13 |  | unmbl |  |-  ( ( { A } e. dom vol /\ ( A (,) +oo ) e. dom vol ) -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) | 
						
							| 14 | 10 12 13 | syl2anc |  |-  ( A e. RR -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) | 
						
							| 15 | 6 14 | eqeltrrd |  |-  ( A e. RR -> ( A [,) +oo ) e. dom vol ) |