Step |
Hyp |
Ref |
Expression |
1 |
|
icoopn.a |
|- ( ph -> A e. RR ) |
2 |
|
icoopn.c |
|- ( ph -> C e. RR* ) |
3 |
|
icoopn.b |
|- ( ph -> B e. RR* ) |
4 |
|
icoopn.k |
|- K = ( topGen ` ran (,) ) |
5 |
|
icoopn.j |
|- J = ( K |`t ( A [,) B ) ) |
6 |
|
icoopn.cleb |
|- ( ph -> C <_ B ) |
7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
8 |
4 7
|
eqeltri |
|- K e. Top |
9 |
8
|
a1i |
|- ( ph -> K e. Top ) |
10 |
|
ovexd |
|- ( ph -> ( A [,) B ) e. _V ) |
11 |
|
iooretop |
|- ( -oo (,) C ) e. ( topGen ` ran (,) ) |
12 |
11 4
|
eleqtrri |
|- ( -oo (,) C ) e. K |
13 |
12
|
a1i |
|- ( ph -> ( -oo (,) C ) e. K ) |
14 |
|
elrestr |
|- ( ( K e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) C ) e. K ) -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
15 |
9 10 13 14
|
syl3anc |
|- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
16 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
17 |
16
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A e. RR* ) |
18 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> C e. RR* ) |
19 |
|
elinel1 |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( -oo (,) C ) ) |
20 |
|
elioore |
|- ( x e. ( -oo (,) C ) -> x e. RR ) |
21 |
19 20
|
syl |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR ) |
22 |
21
|
rexrd |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR* ) |
23 |
22
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. RR* ) |
24 |
3
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> B e. RR* ) |
25 |
|
elinel2 |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) |
27 |
|
icogelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,) B ) ) -> A <_ x ) |
28 |
17 24 26 27
|
syl3anc |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A <_ x ) |
29 |
|
mnfxr |
|- -oo e. RR* |
30 |
29
|
a1i |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> -oo e. RR* ) |
31 |
19
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) C ) ) |
32 |
|
iooltub |
|- ( ( -oo e. RR* /\ C e. RR* /\ x e. ( -oo (,) C ) ) -> x < C ) |
33 |
30 18 31 32
|
syl3anc |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x < C ) |
34 |
17 18 23 28 33
|
elicod |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) C ) ) |
35 |
29
|
a1i |
|- ( ( ph /\ x e. ( A [,) C ) ) -> -oo e. RR* ) |
36 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> C e. RR* ) |
37 |
|
icossre |
|- ( ( A e. RR /\ C e. RR* ) -> ( A [,) C ) C_ RR ) |
38 |
1 2 37
|
syl2anc |
|- ( ph -> ( A [,) C ) C_ RR ) |
39 |
38
|
sselda |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR ) |
40 |
39
|
mnfltd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> -oo < x ) |
41 |
16
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> A e. RR* ) |
42 |
|
simpr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) C ) ) |
43 |
|
icoltub |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> x < C ) |
44 |
41 36 42 43
|
syl3anc |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x < C ) |
45 |
35 36 39 40 44
|
eliood |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( -oo (,) C ) ) |
46 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> B e. RR* ) |
47 |
39
|
rexrd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR* ) |
48 |
|
icogelb |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> A <_ x ) |
49 |
41 36 42 48
|
syl3anc |
|- ( ( ph /\ x e. ( A [,) C ) ) -> A <_ x ) |
50 |
6
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> C <_ B ) |
51 |
47 36 46 44 50
|
xrltletrd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x < B ) |
52 |
41 46 47 49 51
|
elicod |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) B ) ) |
53 |
45 52
|
elind |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) |
54 |
34 53
|
impbida |
|- ( ph -> ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) <-> x e. ( A [,) C ) ) ) |
55 |
54
|
eqrdv |
|- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) = ( A [,) C ) ) |
56 |
5
|
eqcomi |
|- ( K |`t ( A [,) B ) ) = J |
57 |
56
|
a1i |
|- ( ph -> ( K |`t ( A [,) B ) ) = J ) |
58 |
15 55 57
|
3eltr3d |
|- ( ph -> ( A [,) C ) e. J ) |