Step |
Hyp |
Ref |
Expression |
1 |
|
icoopnst.1 |
|- J = ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
2 |
|
iooretop |
|- ( ( A - 1 ) (,) C ) e. ( topGen ` ran (,) ) |
3 |
|
simp1 |
|- ( ( v e. RR /\ A <_ v /\ v < C ) -> v e. RR ) |
4 |
3
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v e. RR ) ) |
5 |
|
ltm1 |
|- ( A e. RR -> ( A - 1 ) < A ) |
6 |
5
|
adantr |
|- ( ( A e. RR /\ v e. RR ) -> ( A - 1 ) < A ) |
7 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
8 |
7
|
adantr |
|- ( ( A e. RR /\ v e. RR ) -> ( A - 1 ) e. RR ) |
9 |
|
ltletr |
|- ( ( ( A - 1 ) e. RR /\ A e. RR /\ v e. RR ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
10 |
9
|
3expb |
|- ( ( ( A - 1 ) e. RR /\ ( A e. RR /\ v e. RR ) ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
11 |
8 10
|
mpancom |
|- ( ( A e. RR /\ v e. RR ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
12 |
6 11
|
mpand |
|- ( ( A e. RR /\ v e. RR ) -> ( A <_ v -> ( A - 1 ) < v ) ) |
13 |
12
|
impr |
|- ( ( A e. RR /\ ( v e. RR /\ A <_ v ) ) -> ( A - 1 ) < v ) |
14 |
13
|
3adantr3 |
|- ( ( A e. RR /\ ( v e. RR /\ A <_ v /\ v < C ) ) -> ( A - 1 ) < v ) |
15 |
14
|
ex |
|- ( A e. RR -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( A - 1 ) < v ) ) |
16 |
15
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( A - 1 ) < v ) ) |
17 |
|
simp3 |
|- ( ( v e. RR /\ A <_ v /\ v < C ) -> v < C ) |
18 |
17
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v < C ) ) |
19 |
4 16 18
|
3jcad |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
20 |
|
simp2 |
|- ( ( v e. RR /\ A <_ v /\ v < C ) -> A <_ v ) |
21 |
20
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> A <_ v ) ) |
22 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
23 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
24 |
22 23
|
sylan |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( C e. RR /\ A < C /\ C <_ B ) ) |
26 |
|
ltleletr |
|- ( ( v e. RR /\ C e. RR /\ B e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
27 |
26
|
3expa |
|- ( ( ( v e. RR /\ C e. RR ) /\ B e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
28 |
27
|
an31s |
|- ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
29 |
28
|
imp |
|- ( ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) /\ ( v < C /\ C <_ B ) ) -> v <_ B ) |
30 |
29
|
ancom2s |
|- ( ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) /\ ( C <_ B /\ v < C ) ) -> v <_ B ) |
31 |
30
|
an4s |
|- ( ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) /\ ( v e. RR /\ v < C ) ) -> v <_ B ) |
32 |
31
|
3adantr2 |
|- ( ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) /\ ( v e. RR /\ A <_ v /\ v < C ) ) -> v <_ B ) |
33 |
32
|
ex |
|- ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
34 |
33
|
anasss |
|- ( ( B e. RR /\ ( C e. RR /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
35 |
34
|
3adantr2 |
|- ( ( B e. RR /\ ( C e. RR /\ A < C /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
36 |
35
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ A < C /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
37 |
25 36
|
syldan |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
38 |
4 21 37
|
3jcad |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
39 |
19 38
|
jcad |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
40 |
|
simpl1 |
|- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> v e. RR ) |
41 |
|
simpr2 |
|- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> A <_ v ) |
42 |
|
simpl3 |
|- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> v < C ) |
43 |
40 41 42
|
3jca |
|- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> ( v e. RR /\ A <_ v /\ v < C ) ) |
44 |
39 43
|
impbid1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
45 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> A e. RR ) |
46 |
25
|
simp1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> C e. RR ) |
47 |
46
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> C e. RR* ) |
48 |
|
elico2 |
|- ( ( A e. RR /\ C e. RR* ) -> ( v e. ( A [,) C ) <-> ( v e. RR /\ A <_ v /\ v < C ) ) ) |
49 |
45 47 48
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,) C ) <-> ( v e. RR /\ A <_ v /\ v < C ) ) ) |
50 |
|
elin |
|- ( v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) <-> ( v e. ( ( A - 1 ) (,) C ) /\ v e. ( A [,] B ) ) ) |
51 |
7
|
rexrd |
|- ( A e. RR -> ( A - 1 ) e. RR* ) |
52 |
51
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A - 1 ) e. RR* ) |
53 |
|
elioo2 |
|- ( ( ( A - 1 ) e. RR* /\ C e. RR* ) -> ( v e. ( ( A - 1 ) (,) C ) <-> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
54 |
52 47 53
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( ( A - 1 ) (,) C ) <-> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
55 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( v e. ( A [,] B ) <-> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
56 |
55
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,] B ) <-> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
57 |
54 56
|
anbi12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. ( ( A - 1 ) (,) C ) /\ v e. ( A [,] B ) ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
58 |
50 57
|
syl5bb |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
59 |
44 49 58
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,) C ) <-> v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) ) |
60 |
59
|
eqrdv |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) |
61 |
|
ineq1 |
|- ( v = ( ( A - 1 ) (,) C ) -> ( v i^i ( A [,] B ) ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) |
62 |
61
|
rspceeqv |
|- ( ( ( ( A - 1 ) (,) C ) e. ( topGen ` ran (,) ) /\ ( A [,) C ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) -> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
63 |
2 60 62
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
64 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
65 |
|
ovex |
|- ( A [,] B ) e. _V |
66 |
|
elrest |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) <-> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) ) |
67 |
64 65 66
|
mp2an |
|- ( ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) <-> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
68 |
63 67
|
sylibr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
69 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
70 |
69
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,] B ) C_ RR ) |
71 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
72 |
71 1
|
resubmet |
|- ( ( A [,] B ) C_ RR -> J = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
73 |
70 72
|
syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> J = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
74 |
68 73
|
eleqtrrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) e. J ) |
75 |
74
|
ex |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A (,] B ) -> ( A [,) C ) e. J ) ) |