| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 2 | 1 | a1i |  |-  ( A e. RR -> -oo e. RR* ) | 
						
							| 3 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 4 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 5 | 4 | a1i |  |-  ( A e. RR -> +oo e. RR* ) | 
						
							| 6 |  | mnflt |  |-  ( A e. RR -> -oo < A ) | 
						
							| 7 |  | ltpnf |  |-  ( A e. RR -> A < +oo ) | 
						
							| 8 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 9 |  | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
							| 10 |  | xrlenlt |  |-  ( ( A e. RR* /\ w e. RR* ) -> ( A <_ w <-> -. w < A ) ) | 
						
							| 11 |  | xrlttr |  |-  ( ( w e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( w < A /\ A < +oo ) -> w < +oo ) ) | 
						
							| 12 |  | xrltletr |  |-  ( ( -oo e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( -oo < A /\ A <_ w ) -> -oo < w ) ) | 
						
							| 13 | 8 9 10 8 11 12 | ixxun |  |-  ( ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) /\ ( -oo < A /\ A < +oo ) ) -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = ( -oo (,) +oo ) ) | 
						
							| 14 | 2 3 5 6 7 13 | syl32anc |  |-  ( A e. RR -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = ( -oo (,) +oo ) ) | 
						
							| 15 |  | ioomax |  |-  ( -oo (,) +oo ) = RR | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( A e. RR -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR ) | 
						
							| 17 |  | ioossre |  |-  ( -oo (,) A ) C_ RR | 
						
							| 18 | 8 9 10 | ixxdisj |  |-  ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) | 
						
							| 19 | 1 3 5 18 | mp3an2i |  |-  ( A e. RR -> ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) | 
						
							| 20 |  | uneqdifeq |  |-  ( ( ( -oo (,) A ) C_ RR /\ ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) -> ( ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR <-> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) ) | 
						
							| 21 | 17 19 20 | sylancr |  |-  ( A e. RR -> ( ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR <-> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) ) | 
						
							| 22 | 16 21 | mpbid |  |-  ( A e. RR -> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) | 
						
							| 23 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 24 |  | iooretop |  |-  ( -oo (,) A ) e. ( topGen ` ran (,) ) | 
						
							| 25 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 26 | 25 | opncld |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) A ) e. ( topGen ` ran (,) ) ) -> ( RR \ ( -oo (,) A ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 27 | 23 24 26 | mp2an |  |-  ( RR \ ( -oo (,) A ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) | 
						
							| 28 | 22 27 | eqeltrrdi |  |-  ( A e. RR -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |