| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							icopnfhmeo.f | 
							 |-  F = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							icopnfhmeo.j | 
							 |-  J = ( TopOpen ` CCfld )  | 
						
						
							| 3 | 
							
								1
							 | 
							icopnfcnv | 
							 |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' F = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simpli | 
							 |-  F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  | 
						
						
							| 5 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 6 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 7 | 
							
								
							 | 
							elico2 | 
							 |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2an | 
							 |-  ( x e. ( 0 [,) 1 ) <-> ( x e. RR /\ 0 <_ x /\ x < 1 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simp1bi | 
							 |-  ( x e. ( 0 [,) 1 ) -> x e. RR )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssriv | 
							 |-  ( 0 [,) 1 ) C_ RR  | 
						
						
							| 11 | 
							
								10
							 | 
							sseli | 
							 |-  ( z e. ( 0 [,) 1 ) -> z e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. RR )  | 
						
						
							| 13 | 
							
								
							 | 
							elico2 | 
							 |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) ) )  | 
						
						
							| 14 | 
							
								5 6 13
							 | 
							mp2an | 
							 |-  ( w e. ( 0 [,) 1 ) <-> ( w e. RR /\ 0 <_ w /\ w < 1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simp3bi | 
							 |-  ( w e. ( 0 [,) 1 ) -> w < 1 )  | 
						
						
							| 16 | 
							
								10
							 | 
							sseli | 
							 |-  ( w e. ( 0 [,) 1 ) -> w e. RR )  | 
						
						
							| 17 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 18 | 
							
								
							 | 
							difrp | 
							 |-  ( ( w e. RR /\ 1 e. RR ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							sylancl | 
							 |-  ( w e. ( 0 [,) 1 ) -> ( w < 1 <-> ( 1 - w ) e. RR+ ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							mpbid | 
							 |-  ( w e. ( 0 [,) 1 ) -> ( 1 - w ) e. RR+ )  | 
						
						
							| 21 | 
							
								20
							 | 
							rpregt0d | 
							 |-  ( w e. ( 0 [,) 1 ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) )  | 
						
						
							| 23 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. RR )  | 
						
						
							| 24 | 
							
								
							 | 
							elico2 | 
							 |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) ) )  | 
						
						
							| 25 | 
							
								5 6 24
							 | 
							mp2an | 
							 |-  ( z e. ( 0 [,) 1 ) <-> ( z e. RR /\ 0 <_ z /\ z < 1 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simp3bi | 
							 |-  ( z e. ( 0 [,) 1 ) -> z < 1 )  | 
						
						
							| 27 | 
							
								
							 | 
							difrp | 
							 |-  ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) )  | 
						
						
							| 28 | 
							
								11 17 27
							 | 
							sylancl | 
							 |-  ( z e. ( 0 [,) 1 ) -> ( z < 1 <-> ( 1 - z ) e. RR+ ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							mpbid | 
							 |-  ( z e. ( 0 [,) 1 ) -> ( 1 - z ) e. RR+ )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( 1 - z ) e. RR+ )  | 
						
						
							| 31 | 
							
								30
							 | 
							rpregt0d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							lt2mul2div | 
							 |-  ( ( ( z e. RR /\ ( ( 1 - w ) e. RR /\ 0 < ( 1 - w ) ) ) /\ ( w e. RR /\ ( ( 1 - z ) e. RR /\ 0 < ( 1 - z ) ) ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) )  | 
						
						
							| 33 | 
							
								12 22 23 31 32
							 | 
							syl22anc | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) )  | 
						
						
							| 34 | 
							
								12 23
							 | 
							remulcld | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. w ) e. RR )  | 
						
						
							| 35 | 
							
								12 23 34
							 | 
							ltsub1d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) )  | 
						
						
							| 36 | 
							
								12
							 | 
							recnd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> z e. CC )  | 
						
						
							| 37 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> 1 e. CC )  | 
						
						
							| 38 | 
							
								23
							 | 
							recnd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> w e. CC )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							subdid | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( ( z x. 1 ) - ( z x. w ) ) )  | 
						
						
							| 40 | 
							
								36
							 | 
							mulridd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. 1 ) = z )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq1d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. 1 ) - ( z x. w ) ) = ( z - ( z x. w ) ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtrd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z x. ( 1 - w ) ) = ( z - ( z x. w ) ) )  | 
						
						
							| 43 | 
							
								38 37 36
							 | 
							subdid | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( ( w x. 1 ) - ( w x. z ) ) )  | 
						
						
							| 44 | 
							
								38
							 | 
							mulridd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. 1 ) = w )  | 
						
						
							| 45 | 
							
								38 36
							 | 
							mulcomd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. z ) = ( z x. w ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							oveq12d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( w x. 1 ) - ( w x. z ) ) = ( w - ( z x. w ) ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							eqtrd | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( w x. ( 1 - z ) ) = ( w - ( z x. w ) ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							breq12d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) <-> ( z - ( z x. w ) ) < ( w - ( z x. w ) ) ) )  | 
						
						
							| 49 | 
							
								35 48
							 | 
							bitr4d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( z x. ( 1 - w ) ) < ( w x. ( 1 - z ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							id | 
							 |-  ( x = z -> x = z )  | 
						
						
							| 51 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = z -> ( 1 - x ) = ( 1 - z ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							oveq12d | 
							 |-  ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							ovex | 
							 |-  ( z / ( 1 - z ) ) e. _V  | 
						
						
							| 54 | 
							
								52 1 53
							 | 
							fvmpt | 
							 |-  ( z e. ( 0 [,) 1 ) -> ( F ` z ) = ( z / ( 1 - z ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							id | 
							 |-  ( x = w -> x = w )  | 
						
						
							| 56 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = w -> ( 1 - x ) = ( 1 - w ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							oveq12d | 
							 |-  ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							ovex | 
							 |-  ( w / ( 1 - w ) ) e. _V  | 
						
						
							| 59 | 
							
								57 1 58
							 | 
							fvmpt | 
							 |-  ( w e. ( 0 [,) 1 ) -> ( F ` w ) = ( w / ( 1 - w ) ) )  | 
						
						
							| 60 | 
							
								54 59
							 | 
							breqan12d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) )  | 
						
						
							| 61 | 
							
								33 49 60
							 | 
							3bitr4d | 
							 |-  ( ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							rgen2 | 
							 |-  A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) )  | 
						
						
							| 63 | 
							
								
							 | 
							df-isom | 
							 |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ A. z e. ( 0 [,) 1 ) A. w e. ( 0 [,) 1 ) ( z < w <-> ( F ` z ) < ( F ` w ) ) ) )  | 
						
						
							| 64 | 
							
								4 62 63
							 | 
							mpbir2an | 
							 |-  F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) )  | 
						
						
							| 65 | 
							
								
							 | 
							letsr | 
							 |-  <_ e. TosetRel  | 
						
						
							| 66 | 
							
								65
							 | 
							elexi | 
							 |-  <_ e. _V  | 
						
						
							| 67 | 
							
								66
							 | 
							inex1 | 
							 |-  ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V  | 
						
						
							| 68 | 
							
								66
							 | 
							inex1 | 
							 |-  ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V  | 
						
						
							| 69 | 
							
								
							 | 
							icossxr | 
							 |-  ( 0 [,) 1 ) C_ RR*  | 
						
						
							| 70 | 
							
								
							 | 
							icossxr | 
							 |-  ( 0 [,) +oo ) C_ RR*  | 
						
						
							| 71 | 
							
								
							 | 
							leiso | 
							 |-  ( ( ( 0 [,) 1 ) C_ RR* /\ ( 0 [,) +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) )  | 
						
						
							| 72 | 
							
								69 70 71
							 | 
							mp2an | 
							 |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) )  | 
						
						
							| 73 | 
							
								64 72
							 | 
							mpbi | 
							 |-  F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) )  | 
						
						
							| 74 | 
							
								
							 | 
							isores1 | 
							 |-  ( F Isom <_ , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							mpbi | 
							 |-  F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) )  | 
						
						
							| 76 | 
							
								
							 | 
							isores2 | 
							 |-  ( F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , <_ ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							mpbi | 
							 |-  F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) )  | 
						
						
							| 78 | 
							
								
							 | 
							tsrps | 
							 |-  ( <_ e. TosetRel -> <_ e. PosetRel )  | 
						
						
							| 79 | 
							
								65 78
							 | 
							ax-mp | 
							 |-  <_ e. PosetRel  | 
						
						
							| 80 | 
							
								
							 | 
							ledm | 
							 |-  RR* = dom <_  | 
						
						
							| 81 | 
							
								80
							 | 
							psssdm | 
							 |-  ( ( <_ e. PosetRel /\ ( 0 [,) 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) )  | 
						
						
							| 82 | 
							
								79 69 81
							 | 
							mp2an | 
							 |-  dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) = ( 0 [,) 1 )  | 
						
						
							| 83 | 
							
								82
							 | 
							eqcomi | 
							 |-  ( 0 [,) 1 ) = dom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) )  | 
						
						
							| 84 | 
							
								80
							 | 
							psssdm | 
							 |-  ( ( <_ e. PosetRel /\ ( 0 [,) +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) )  | 
						
						
							| 85 | 
							
								79 70 84
							 | 
							mp2an | 
							 |-  dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) = ( 0 [,) +oo )  | 
						
						
							| 86 | 
							
								85
							 | 
							eqcomi | 
							 |-  ( 0 [,) +oo ) = dom ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) )  | 
						
						
							| 87 | 
							
								83 86
							 | 
							ordthmeo | 
							 |-  ( ( ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) , ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) ) )  | 
						
						
							| 88 | 
							
								67 68 77 87
							 | 
							mp3an | 
							 |-  F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							eqid | 
							 |-  ( ordTop ` <_ ) = ( ordTop ` <_ )  | 
						
						
							| 90 | 
							
								2 89
							 | 
							xrrest2 | 
							 |-  ( ( 0 [,) 1 ) C_ RR -> ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) )  | 
						
						
							| 91 | 
							
								10 90
							 | 
							ax-mp | 
							 |-  ( J |`t ( 0 [,) 1 ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) )  | 
						
						
							| 92 | 
							
								
							 | 
							iccssico2 | 
							 |-  ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) 1 ) ) -> ( x [,] y ) C_ ( 0 [,) 1 ) )  | 
						
						
							| 93 | 
							
								69 92
							 | 
							ordtrestixx | 
							 |-  ( ( ordTop ` <_ ) |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) )  | 
						
						
							| 94 | 
							
								91 93
							 | 
							eqtri | 
							 |-  ( J |`t ( 0 [,) 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							rge0ssre | 
							 |-  ( 0 [,) +oo ) C_ RR  | 
						
						
							| 96 | 
							
								2 89
							 | 
							xrrest2 | 
							 |-  ( ( 0 [,) +oo ) C_ RR -> ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							ax-mp | 
							 |-  ( J |`t ( 0 [,) +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) )  | 
						
						
							| 98 | 
							
								
							 | 
							iccssico2 | 
							 |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x [,] y ) C_ ( 0 [,) +oo ) )  | 
						
						
							| 99 | 
							
								70 98
							 | 
							ordtrestixx | 
							 |-  ( ( ordTop ` <_ ) |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							eqtri | 
							 |-  ( J |`t ( 0 [,) +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) )  | 
						
						
							| 101 | 
							
								94 100
							 | 
							oveq12i | 
							 |-  ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,) 1 ) X. ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,) +oo ) X. ( 0 [,) +oo ) ) ) ) )  | 
						
						
							| 102 | 
							
								88 101
							 | 
							eleqtrri | 
							 |-  F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) )  | 
						
						
							| 103 | 
							
								64 102
							 | 
							pm3.2i | 
							 |-  ( F Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ F e. ( ( J |`t ( 0 [,) 1 ) ) Homeo ( J |`t ( 0 [,) +oo ) ) ) )  |