Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. RR* /\ A =/= +oo ) -> A e. RR* ) |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
2
|
a1i |
|- ( ( A e. RR* /\ A =/= +oo ) -> +oo e. RR* ) |
4 |
|
nltpnft |
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
5 |
4
|
necon2abid |
|- ( A e. RR* -> ( A < +oo <-> A =/= +oo ) ) |
6 |
5
|
biimpar |
|- ( ( A e. RR* /\ A =/= +oo ) -> A < +oo ) |
7 |
|
lbico1 |
|- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> A e. ( A [,) +oo ) ) |
8 |
1 3 6 7
|
syl3anc |
|- ( ( A e. RR* /\ A =/= +oo ) -> A e. ( A [,) +oo ) ) |
9 |
8
|
ne0d |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A [,) +oo ) =/= (/) ) |
10 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
11 |
|
idd |
|- ( ( w e. RR* /\ +oo e. RR* ) -> ( w < +oo -> w < +oo ) ) |
12 |
|
xrltle |
|- ( ( w e. RR* /\ +oo e. RR* ) -> ( w < +oo -> w <_ +oo ) ) |
13 |
|
xrltle |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
14 |
|
idd |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A <_ w -> A <_ w ) ) |
15 |
10 11 12 13 14
|
ixxub |
|- ( ( A e. RR* /\ +oo e. RR* /\ ( A [,) +oo ) =/= (/) ) -> sup ( ( A [,) +oo ) , RR* , < ) = +oo ) |
16 |
1 3 9 15
|
syl3anc |
|- ( ( A e. RR* /\ A =/= +oo ) -> sup ( ( A [,) +oo ) , RR* , < ) = +oo ) |