| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 2 |  | elico2 |  |-  ( ( A e. RR /\ B e. RR* ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) | 
						
							| 6 |  | 3anass |  |-  ( ( X e. RR /\ A <_ X /\ X < B ) <-> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) | 
						
							| 7 | 5 6 | imbitrdi |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) ) | 
						
							| 8 |  | leadd1 |  |-  ( ( A e. RR /\ X e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) | 
						
							| 9 | 8 | 3com12 |  |-  ( ( X e. RR /\ A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) | 
						
							| 10 | 9 | 3expib |  |-  ( X e. RR -> ( ( A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) | 
						
							| 11 | 10 | com12 |  |-  ( ( A e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) | 
						
							| 14 |  | ltadd1 |  |-  ( ( X e. RR /\ B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) | 
						
							| 15 | 14 | 3expib |  |-  ( X e. RR -> ( ( B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) | 
						
							| 16 | 15 | com12 |  |-  ( ( B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) | 
						
							| 17 | 16 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) | 
						
							| 19 | 13 18 | anbi12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( ( A <_ X /\ X < B ) <-> ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 20 | 19 | pm5.32da |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) <-> ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) | 
						
							| 21 |  | readdcl |  |-  ( ( X e. RR /\ C e. RR ) -> ( X + C ) e. RR ) | 
						
							| 22 | 21 | expcom |  |-  ( C e. RR -> ( X e. RR -> ( X + C ) e. RR ) ) | 
						
							| 23 | 22 | anim1d |  |-  ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) | 
						
							| 24 |  | 3anass |  |-  ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 25 | 23 24 | imbitrrdi |  |-  ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 27 |  | readdcl |  |-  ( ( A e. RR /\ C e. RR ) -> ( A + C ) e. RR ) | 
						
							| 28 | 27 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) e. RR ) | 
						
							| 29 |  | readdcl |  |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 30 | 29 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 31 |  | rexr |  |-  ( ( B + C ) e. RR -> ( B + C ) e. RR* ) | 
						
							| 32 |  | elico2 |  |-  ( ( ( A + C ) e. RR /\ ( B + C ) e. RR* ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 33 | 31 32 | sylan2 |  |-  ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) | 
						
							| 34 | 33 | biimprd |  |-  ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) | 
						
							| 35 | 28 30 34 | syl2anc |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) | 
						
							| 36 | 26 35 | syld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) | 
						
							| 37 | 20 36 | sylbid |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) | 
						
							| 38 | 7 37 | syld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |