Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
2 |
|
elico2 |
|- ( ( A e. RR /\ B e. RR* ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
4 |
3
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
6 |
|
3anass |
|- ( ( X e. RR /\ A <_ X /\ X < B ) <-> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) |
7 |
5 6
|
syl6ib |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) ) |
8 |
|
leadd1 |
|- ( ( A e. RR /\ X e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
9 |
8
|
3com12 |
|- ( ( X e. RR /\ A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
10 |
9
|
3expib |
|- ( X e. RR -> ( ( A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
11 |
10
|
com12 |
|- ( ( A e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
12 |
11
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
13 |
12
|
imp |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
14 |
|
ltadd1 |
|- ( ( X e. RR /\ B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) |
15 |
14
|
3expib |
|- ( X e. RR -> ( ( B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
16 |
15
|
com12 |
|- ( ( B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
17 |
16
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
18 |
17
|
imp |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) |
19 |
13 18
|
anbi12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( ( A <_ X /\ X < B ) <-> ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
20 |
19
|
pm5.32da |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) <-> ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) |
21 |
|
readdcl |
|- ( ( X e. RR /\ C e. RR ) -> ( X + C ) e. RR ) |
22 |
21
|
expcom |
|- ( C e. RR -> ( X e. RR -> ( X + C ) e. RR ) ) |
23 |
22
|
anim1d |
|- ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) |
24 |
|
3anass |
|- ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
25 |
23 24
|
syl6ibr |
|- ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
26 |
25
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
27 |
|
readdcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
28 |
27
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
29 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
30 |
29
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
31 |
|
rexr |
|- ( ( B + C ) e. RR -> ( B + C ) e. RR* ) |
32 |
|
elico2 |
|- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR* ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
33 |
31 32
|
sylan2 |
|- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
34 |
33
|
biimprd |
|- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
35 |
28 30 34
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
36 |
26 35
|
syld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
37 |
20 36
|
sylbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
38 |
7 37
|
syld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |