Metamath Proof Explorer


Theorem icossico

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Assertion icossico
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,) D ) C_ ( A [,) B ) )

Proof

Step Hyp Ref Expression
1 df-ico
 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )
2 xrletr
 |-  ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C <_ w ) -> A <_ w ) )
3 xrltletr
 |-  ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w < D /\ D <_ B ) -> w < B ) )
4 1 1 2 3 ixxss12
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,) D ) C_ ( A [,) B ) )