Metamath Proof Explorer


Theorem icossre

Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion icossre
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR )

Proof

Step Hyp Ref Expression
1 elico2
 |-  ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) )
2 1 biimp3a
 |-  ( ( A e. RR /\ B e. RR* /\ x e. ( A [,) B ) ) -> ( x e. RR /\ A <_ x /\ x < B ) )
3 2 simp1d
 |-  ( ( A e. RR /\ B e. RR* /\ x e. ( A [,) B ) ) -> x e. RR )
4 3 3expia
 |-  ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) -> x e. RR ) )
5 4 ssrdv
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR )