| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. RR* /\ B e. ( A [,) B ) ) -> A e. RR* )  | 
						
						
							| 2 | 
							
								
							 | 
							icossxr | 
							 |-  ( A [,) B ) C_ RR*  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( B e. ( A [,) B ) -> B e. ( A [,) B ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sselid | 
							 |-  ( B e. ( A [,) B ) -> B e. RR* )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. RR* )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							 |-  ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. ( A [,) B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							icoltub | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ B e. ( A [,) B ) ) -> B < B )  | 
						
						
							| 8 | 
							
								1 5 6 7
							 | 
							syl3anc | 
							 |-  ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B < B )  | 
						
						
							| 9 | 
							
								
							 | 
							xrltnr | 
							 |-  ( B e. RR* -> -. B < B )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							syl | 
							 |-  ( B e. ( A [,) B ) -> -. B < B )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( A e. RR* /\ B e. ( A [,) B ) ) -> -. B < B )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							pm2.65da | 
							 |-  ( A e. RR* -> -. B e. ( A [,) B ) )  |