Metamath Proof Explorer


Theorem icoun

Description: The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icoun
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( A [,) B ) u. ( B [,) C ) ) = ( A [,) C ) )

Proof

Step Hyp Ref Expression
1 df-ico
 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )
2 xrlenlt
 |-  ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) )
3 xrltletr
 |-  ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w < B /\ B <_ C ) -> w < C ) )
4 xrletr
 |-  ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A <_ B /\ B <_ w ) -> A <_ w ) )
5 1 1 2 1 3 4 ixxun
 |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( A [,) B ) u. ( B [,) C ) ) = ( A [,) C ) )