Metamath Proof Explorer


Theorem iddvds

Description: An integer divides itself. Theorem 1.1(a) in ApostolNT p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion iddvds
|- ( N e. ZZ -> N || N )

Proof

Step Hyp Ref Expression
1 zcn
 |-  ( N e. ZZ -> N e. CC )
2 1 mulid2d
 |-  ( N e. ZZ -> ( 1 x. N ) = N )
3 1z
 |-  1 e. ZZ
4 dvds0lem
 |-  ( ( ( 1 e. ZZ /\ N e. ZZ /\ N e. ZZ ) /\ ( 1 x. N ) = N ) -> N || N )
5 3 4 mp3anl1
 |-  ( ( ( N e. ZZ /\ N e. ZZ ) /\ ( 1 x. N ) = N ) -> N || N )
6 5 anabsan
 |-  ( ( N e. ZZ /\ ( 1 x. N ) = N ) -> N || N )
7 2 6 mpdan
 |-  ( N e. ZZ -> N || N )