Description: An integer divides itself. Theorem 1.1(a) in ApostolNT p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iddvds | |- ( N e. ZZ -> N || N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
2 | 1 | mulid2d | |- ( N e. ZZ -> ( 1 x. N ) = N ) |
3 | 1z | |- 1 e. ZZ |
|
4 | dvds0lem | |- ( ( ( 1 e. ZZ /\ N e. ZZ /\ N e. ZZ ) /\ ( 1 x. N ) = N ) -> N || N ) |
|
5 | 3 4 | mp3anl1 | |- ( ( ( N e. ZZ /\ N e. ZZ ) /\ ( 1 x. N ) = N ) -> N || N ) |
6 | 5 | anabsan | |- ( ( N e. ZZ /\ ( 1 x. N ) = N ) -> N || N ) |
7 | 2 6 | mpdan | |- ( N e. ZZ -> N || N ) |