| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( N e. NN -> ( N - 1 ) e. NN0 )  | 
						
						
							| 2 | 
							
								
							 | 
							zexpcl | 
							 |-  ( ( M e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( M ^ ( N - 1 ) ) e. ZZ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							 |-  ( ( M e. ZZ /\ N e. NN ) -> ( M ^ ( N - 1 ) ) e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							 |-  ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ )  | 
						
						
							| 5 | 
							
								
							 | 
							dvdsmul2 | 
							 |-  ( ( ( M ^ ( N - 1 ) ) e. ZZ /\ M e. ZZ ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2anc | 
							 |-  ( ( M e. ZZ /\ N e. NN ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) )  | 
						
						
							| 7 | 
							
								
							 | 
							zcn | 
							 |-  ( M e. ZZ -> M e. CC )  | 
						
						
							| 8 | 
							
								
							 | 
							expm1t | 
							 |-  ( ( M e. CC /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan | 
							 |-  ( ( M e. ZZ /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							breqtrrd | 
							 |-  ( ( M e. ZZ /\ N e. NN ) -> M || ( M ^ N ) )  |