Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( B e. V -> B e. V ) |
2 |
|
reli |
|- Rel _I |
3 |
2
|
brrelex1i |
|- ( A _I B -> A e. _V ) |
4 |
1 3
|
anim12ci |
|- ( ( B e. V /\ A _I B ) -> ( A e. _V /\ B e. V ) ) |
5 |
|
eleq1 |
|- ( A = B -> ( A e. V <-> B e. V ) ) |
6 |
5
|
biimparc |
|- ( ( B e. V /\ A = B ) -> A e. V ) |
7 |
6
|
elexd |
|- ( ( B e. V /\ A = B ) -> A e. _V ) |
8 |
|
simpl |
|- ( ( B e. V /\ A = B ) -> B e. V ) |
9 |
7 8
|
jca |
|- ( ( B e. V /\ A = B ) -> ( A e. _V /\ B e. V ) ) |
10 |
|
eqeq1 |
|- ( x = A -> ( x = y <-> A = y ) ) |
11 |
|
eqeq2 |
|- ( y = B -> ( A = y <-> A = B ) ) |
12 |
|
df-id |
|- _I = { <. x , y >. | x = y } |
13 |
10 11 12
|
brabg |
|- ( ( A e. _V /\ B e. V ) -> ( A _I B <-> A = B ) ) |
14 |
4 9 13
|
pm5.21nd |
|- ( B e. V -> ( A _I B <-> A = B ) ) |