Step |
Hyp |
Ref |
Expression |
1 |
|
idffth.i |
|- I = ( idFunc ` C ) |
2 |
|
relfunc |
|- Rel ( C Func C ) |
3 |
1
|
idfucl |
|- ( C e. Cat -> I e. ( C Func C ) ) |
4 |
|
1st2nd |
|- ( ( Rel ( C Func C ) /\ I e. ( C Func C ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
5 |
2 3 4
|
sylancr |
|- ( C e. Cat -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
6 |
5 3
|
eqeltrrd |
|- ( C e. Cat -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
7 |
|
df-br |
|- ( ( 1st ` I ) ( C Func C ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
8 |
6 7
|
sylibr |
|- ( C e. Cat -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) ) |
9 |
|
f1oi |
|- ( _I |` ( x ( Hom ` C ) y ) ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( x ( Hom ` C ) y ) |
10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
11 |
|
simpl |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
12 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
13 |
|
simprl |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
14 |
|
simprr |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
15 |
1 10 11 12 13 14
|
idfu2nd |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` C ) y ) ) ) |
16 |
|
eqidd |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` C ) y ) ) |
17 |
1 10 11 13
|
idfu1 |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` I ) ` x ) = x ) |
18 |
1 10 11 14
|
idfu1 |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` I ) ` y ) = y ) |
19 |
17 18
|
oveq12d |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) = ( x ( Hom ` C ) y ) ) |
20 |
15 16 19
|
f1oeq123d |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) <-> ( _I |` ( x ( Hom ` C ) y ) ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( x ( Hom ` C ) y ) ) ) |
21 |
9 20
|
mpbiri |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
22 |
21
|
ralrimivva |
|- ( C e. Cat -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
23 |
10 12 12
|
isffth2 |
|- ( ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( C Func C ) ( 2nd ` I ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) ) |
24 |
8 22 23
|
sylanbrc |
|- ( C e. Cat -> ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) ) |
25 |
|
df-br |
|- ( ( 1st ` I ) ( ( C Full C ) i^i ( C Faith C ) ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( C Full C ) i^i ( C Faith C ) ) ) |
26 |
24 25
|
sylib |
|- ( C e. Cat -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( C Full C ) i^i ( C Faith C ) ) ) |
27 |
5 26
|
eqeltrd |
|- ( C e. Cat -> I e. ( ( C Full C ) i^i ( C Faith C ) ) ) |