Metamath Proof Explorer


Theorem idfu1

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i
|- I = ( idFunc ` C )
idfuval.b
|- B = ( Base ` C )
idfuval.c
|- ( ph -> C e. Cat )
idfu1.x
|- ( ph -> X e. B )
Assertion idfu1
|- ( ph -> ( ( 1st ` I ) ` X ) = X )

Proof

Step Hyp Ref Expression
1 idfuval.i
 |-  I = ( idFunc ` C )
2 idfuval.b
 |-  B = ( Base ` C )
3 idfuval.c
 |-  ( ph -> C e. Cat )
4 idfu1.x
 |-  ( ph -> X e. B )
5 1 2 3 idfu1st
 |-  ( ph -> ( 1st ` I ) = ( _I |` B ) )
6 5 fveq1d
 |-  ( ph -> ( ( 1st ` I ) ` X ) = ( ( _I |` B ) ` X ) )
7 fvresi
 |-  ( X e. B -> ( ( _I |` B ) ` X ) = X )
8 4 7 syl
 |-  ( ph -> ( ( _I |` B ) ` X ) = X )
9 6 8 eqtrd
 |-  ( ph -> ( ( 1st ` I ) ` X ) = X )