Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idfuval.i | |- I = ( idFunc ` C ) |
|
idfuval.b | |- B = ( Base ` C ) |
||
idfuval.c | |- ( ph -> C e. Cat ) |
||
idfu1.x | |- ( ph -> X e. B ) |
||
Assertion | idfu1 | |- ( ph -> ( ( 1st ` I ) ` X ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfuval.i | |- I = ( idFunc ` C ) |
|
2 | idfuval.b | |- B = ( Base ` C ) |
|
3 | idfuval.c | |- ( ph -> C e. Cat ) |
|
4 | idfu1.x | |- ( ph -> X e. B ) |
|
5 | 1 2 3 | idfu1st | |- ( ph -> ( 1st ` I ) = ( _I |` B ) ) |
6 | 5 | fveq1d | |- ( ph -> ( ( 1st ` I ) ` X ) = ( ( _I |` B ) ` X ) ) |
7 | fvresi | |- ( X e. B -> ( ( _I |` B ) ` X ) = X ) |
|
8 | 4 7 | syl | |- ( ph -> ( ( _I |` B ) ` X ) = X ) |
9 | 6 8 | eqtrd | |- ( ph -> ( ( 1st ` I ) ` X ) = X ) |