| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							idfuval.i | 
							 |-  I = ( idFunc ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							idfuval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							idfuval.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							idfuval | 
							 |-  ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( ph -> ( 1st ` I ) = ( 1st ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							resiexg | 
							 |-  ( B e. _V -> ( _I |` B ) e. _V )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ax-mp | 
							 |-  ( _I |` B ) e. _V  | 
						
						
							| 10 | 
							
								7 7
							 | 
							xpex | 
							 |-  ( B X. B ) e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							mptex | 
							 |-  ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. _V  | 
						
						
							| 12 | 
							
								9 11
							 | 
							op1st | 
							 |-  ( 1st ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) = ( _I |` B )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							eqtrdi | 
							 |-  ( ph -> ( 1st ` I ) = ( _I |` B ) )  |