Step |
Hyp |
Ref |
Expression |
1 |
|
idfuval.i |
|- I = ( idFunc ` C ) |
2 |
|
idfuval.b |
|- B = ( Base ` C ) |
3 |
|
idfuval.c |
|- ( ph -> C e. Cat ) |
4 |
|
idfuval.h |
|- H = ( Hom ` C ) |
5 |
|
idfu2nd.x |
|- ( ph -> X e. B ) |
6 |
|
idfu2nd.y |
|- ( ph -> Y e. B ) |
7 |
|
df-ov |
|- ( X ( 2nd ` I ) Y ) = ( ( 2nd ` I ) ` <. X , Y >. ) |
8 |
1 2 3 4
|
idfuval |
|- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
9 |
8
|
fveq2d |
|- ( ph -> ( 2nd ` I ) = ( 2nd ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) ) |
10 |
2
|
fvexi |
|- B e. _V |
11 |
|
resiexg |
|- ( B e. _V -> ( _I |` B ) e. _V ) |
12 |
10 11
|
ax-mp |
|- ( _I |` B ) e. _V |
13 |
10 10
|
xpex |
|- ( B X. B ) e. _V |
14 |
13
|
mptex |
|- ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) e. _V |
15 |
12 14
|
op2nd |
|- ( 2nd ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) |
16 |
9 15
|
eqtrdi |
|- ( ph -> ( 2nd ` I ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
19 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
20 |
18 19
|
eqtr4di |
|- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) ) |
21 |
20
|
reseq2d |
|- ( ( ph /\ z = <. X , Y >. ) -> ( _I |` ( H ` z ) ) = ( _I |` ( X H Y ) ) ) |
22 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
23 |
|
ovex |
|- ( X H Y ) e. _V |
24 |
|
resiexg |
|- ( ( X H Y ) e. _V -> ( _I |` ( X H Y ) ) e. _V ) |
25 |
23 24
|
mp1i |
|- ( ph -> ( _I |` ( X H Y ) ) e. _V ) |
26 |
16 21 22 25
|
fvmptd |
|- ( ph -> ( ( 2nd ` I ) ` <. X , Y >. ) = ( _I |` ( X H Y ) ) ) |
27 |
7 26
|
eqtrid |
|- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X H Y ) ) ) |