| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							idfucl.i | 
							 |-  I = ( idFunc ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( C e. Cat -> C e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							idfuval | 
							 |-  ( C e. Cat -> I = <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( C e. Cat -> ( 2nd ` I ) = ( 2nd ` <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fvex | 
							 |-  ( Base ` C ) e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							resiexg | 
							 |-  ( ( Base ` C ) e. _V -> ( _I |` ( Base ` C ) ) e. _V )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ax-mp | 
							 |-  ( _I |` ( Base ` C ) ) e. _V  | 
						
						
							| 10 | 
							
								7 7
							 | 
							xpex | 
							 |-  ( ( Base ` C ) X. ( Base ` C ) ) e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							mptex | 
							 |-  ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. _V  | 
						
						
							| 12 | 
							
								9 11
							 | 
							op2nd | 
							 |-  ( 2nd ` <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) = ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							eqtrdi | 
							 |-  ( C e. Cat -> ( 2nd ` I ) = ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							opeq2d | 
							 |-  ( C e. Cat -> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. = <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. )  | 
						
						
							| 15 | 
							
								5 14
							 | 
							eqtr4d | 
							 |-  ( C e. Cat -> I = <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. )  | 
						
						
							| 16 | 
							
								
							 | 
							f1oi | 
							 |-  ( _I |` ( Base ` C ) ) : ( Base ` C ) -1-1-onto-> ( Base ` C )  | 
						
						
							| 17 | 
							
								
							 | 
							f1of | 
							 |-  ( ( _I |` ( Base ` C ) ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) -> ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							mp1i | 
							 |-  ( C e. Cat -> ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) )  | 
						
						
							| 19 | 
							
								
							 | 
							f1oi | 
							 |-  ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) -1-1-onto-> ( ( Hom ` C ) ` z )  | 
						
						
							| 20 | 
							
								
							 | 
							f1of | 
							 |-  ( ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) -1-1-onto-> ( ( Hom ` C ) ` z ) -> ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							ax-mp | 
							 |-  ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z )  | 
						
						
							| 22 | 
							
								
							 | 
							fvex | 
							 |-  ( ( Hom ` C ) ` z ) e. _V  | 
						
						
							| 23 | 
							
								22 22
							 | 
							elmap | 
							 |-  ( ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) ) <-> ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							mpbir | 
							 |-  ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) )  | 
						
						
							| 25 | 
							
								
							 | 
							xp1st | 
							 |-  ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` z ) e. ( Base ` C ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantl | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 1st ` z ) e. ( Base ` C ) )  | 
						
						
							| 27 | 
							
								
							 | 
							fvresi | 
							 |-  ( ( 1st ` z ) e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) = ( 1st ` z ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) = ( 1st ` z ) )  | 
						
						
							| 29 | 
							
								
							 | 
							xp2nd | 
							 |-  ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` z ) e. ( Base ` C ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 2nd ` z ) e. ( Base ` C ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fvresi | 
							 |-  ( ( 2nd ` z ) e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) = ( 2nd ` z ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) = ( 2nd ` z ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							oveq12d | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							df-ov | 
							 |-  ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) )  | 
						
						
							| 36 | 
							
								
							 | 
							1st2nd2 | 
							 |-  ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantl | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Hom ` C ) ` z ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							eqtr4d | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( Hom ` C ) ` z ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq1d | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) = ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 41 | 
							
								24 40
							 | 
							eleqtrrid | 
							 |-  ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ralrimiva | 
							 |-  ( C e. Cat -> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							mptelixpg | 
							 |-  ( ( ( Base ` C ) X. ( Base ` C ) ) e. _V -> ( ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) )  | 
						
						
							| 44 | 
							
								10 43
							 | 
							ax-mp | 
							 |-  ( ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							sylibr | 
							 |-  ( C e. Cat -> ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 46 | 
							
								13 45
							 | 
							eqeltrd | 
							 |-  ( C e. Cat -> ( 2nd ` I ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` C ) = ( Id ` C )  | 
						
						
							| 48 | 
							
								
							 | 
							simpl | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> C e. Cat )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 50 | 
							
								2 4 47 48 49
							 | 
							catidcl | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) )  | 
						
						
							| 51 | 
							
								
							 | 
							fvresi | 
							 |-  ( ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) -> ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` x ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							syl | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` x ) )  | 
						
						
							| 53 | 
							
								1 2 48 4 49 49
							 | 
							idfu2nd | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( x ( 2nd ` I ) x ) = ( _I |` ( x ( Hom ` C ) x ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							fveq1d | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							fvresi | 
							 |-  ( x e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x )  | 
						
						
							| 57 | 
							
								56
							 | 
							fveq2d | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) = ( ( Id ` C ) ` x ) )  | 
						
						
							| 58 | 
							
								52 54 57
							 | 
							3eqtr4d | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 60 | 
							
								48
							 | 
							ad2antrr | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> C e. Cat )  | 
						
						
							| 61 | 
							
								49
							 | 
							ad2antrr | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 62 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> y e. ( Base ` C ) )  | 
						
						
							| 63 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> z e. ( Base ` C ) )  | 
						
						
							| 64 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) )  | 
						
						
							| 65 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) )  | 
						
						
							| 66 | 
							
								2 4 59 60 61 62 63 64 65
							 | 
							catcocl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) )  | 
						
						
							| 67 | 
							
								
							 | 
							fvresi | 
							 |-  ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							syl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) )  | 
						
						
							| 69 | 
							
								1 2 60 4 61 63
							 | 
							idfu2nd | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( x ( 2nd ` I ) z ) = ( _I |` ( x ( Hom ` C ) z ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							fveq1d | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) )  | 
						
						
							| 71 | 
							
								61 55
							 | 
							syl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x )  | 
						
						
							| 72 | 
							
								
							 | 
							fvresi | 
							 |-  ( y e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y )  | 
						
						
							| 73 | 
							
								62 72
							 | 
							syl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y )  | 
						
						
							| 74 | 
							
								71 73
							 | 
							opeq12d | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. = <. x , y >. )  | 
						
						
							| 75 | 
							
								
							 | 
							fvresi | 
							 |-  ( z e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` z ) = z )  | 
						
						
							| 76 | 
							
								63 75
							 | 
							syl | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` z ) = z )  | 
						
						
							| 77 | 
							
								74 76
							 | 
							oveq12d | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) = ( <. x , y >. ( comp ` C ) z ) )  | 
						
						
							| 78 | 
							
								1 2 60 4 62 63 65
							 | 
							idfu2 | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` I ) z ) ` g ) = g )  | 
						
						
							| 79 | 
							
								1 2 60 4 61 62 64
							 | 
							idfu2 | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) y ) ` f ) = f )  | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							oveq123d | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) )  | 
						
						
							| 81 | 
							
								68 70 80
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ralrimivva | 
							 |-  ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							ralrimivva | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) )  | 
						
						
							| 84 | 
							
								58 83
							 | 
							jca | 
							 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							ralrimiva | 
							 |-  ( C e. Cat -> A. x e. ( Base ` C ) ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) )  | 
						
						
							| 86 | 
							
								2 2 4 4 47 47 59 59 3 3
							 | 
							isfunc | 
							 |-  ( C e. Cat -> ( ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) <-> ( ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) /\ ( 2nd ` I ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) ) ) )  | 
						
						
							| 87 | 
							
								18 46 85 86
							 | 
							mpbir3and | 
							 |-  ( C e. Cat -> ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) )  | 
						
						
							| 88 | 
							
								
							 | 
							df-br | 
							 |-  ( ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) <-> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. e. ( C Func C ) )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							sylib | 
							 |-  ( C e. Cat -> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. e. ( C Func C ) )  | 
						
						
							| 90 | 
							
								15 89
							 | 
							eqeltrd | 
							 |-  ( C e. Cat -> I e. ( C Func C ) )  |