Description: Lemma for idfudiag1bas and idfudiag1 . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfudiag1lem.1 | |- ( ph -> ( _I |` A ) = ( A X. { B } ) ) |
|
| idfudiag1lem.2 | |- ( ph -> A =/= (/) ) |
||
| Assertion | idfudiag1lem | |- ( ph -> A = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1lem.1 | |- ( ph -> ( _I |` A ) = ( A X. { B } ) ) |
|
| 2 | idfudiag1lem.2 | |- ( ph -> A =/= (/) ) |
|
| 3 | rnresi | |- ran ( _I |` A ) = A |
|
| 4 | 1 | rneqd | |- ( ph -> ran ( _I |` A ) = ran ( A X. { B } ) ) |
| 5 | 3 4 | eqtr3id | |- ( ph -> A = ran ( A X. { B } ) ) |
| 6 | rnxp | |- ( A =/= (/) -> ran ( A X. { B } ) = { B } ) |
|
| 7 | 2 6 | syl | |- ( ph -> ran ( A X. { B } ) = { B } ) |
| 8 | 5 7 | eqtrd | |- ( ph -> A = { B } ) |