Metamath Proof Explorer


Theorem idfudiag1lem

Description: Lemma for idfudiag1bas and idfudiag1 . (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses idfudiag1lem.1
|- ( ph -> ( _I |` A ) = ( A X. { B } ) )
idfudiag1lem.2
|- ( ph -> A =/= (/) )
Assertion idfudiag1lem
|- ( ph -> A = { B } )

Proof

Step Hyp Ref Expression
1 idfudiag1lem.1
 |-  ( ph -> ( _I |` A ) = ( A X. { B } ) )
2 idfudiag1lem.2
 |-  ( ph -> A =/= (/) )
3 rnresi
 |-  ran ( _I |` A ) = A
4 1 rneqd
 |-  ( ph -> ran ( _I |` A ) = ran ( A X. { B } ) )
5 3 4 eqtr3id
 |-  ( ph -> A = ran ( A X. { B } ) )
6 rnxp
 |-  ( A =/= (/) -> ran ( A X. { B } ) = { B } )
7 2 6 syl
 |-  ( ph -> ran ( A X. { B } ) = { B } )
8 5 7 eqtrd
 |-  ( ph -> A = { B } )