| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							idfusubc.s | 
							 |-  S = ( C |`cat J )  | 
						
						
							| 2 | 
							
								
							 | 
							idfusubc.i | 
							 |-  I = ( idFunc ` S )  | 
						
						
							| 3 | 
							
								
							 | 
							idfusubc.b | 
							 |-  B = ( Base ` S )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							idfusubc0 | 
							 |-  ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 6 | 
							
								
							 | 
							subcrcl | 
							 |-  ( J e. ( Subcat ` C ) -> C e. Cat )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							 |-  ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							 |-  ( J e. ( Subcat ` C ) -> dom dom J = dom dom J )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							subcfn | 
							 |-  ( J e. ( Subcat ` C ) -> J Fn ( dom dom J X. dom dom J ) )  | 
						
						
							| 10 | 
							
								7 9 5
							 | 
							subcss1 | 
							 |-  ( J e. ( Subcat ` C ) -> dom dom J C_ ( Base ` C ) )  | 
						
						
							| 11 | 
							
								1 5 6 9 10
							 | 
							reschom | 
							 |-  ( J e. ( Subcat ` C ) -> J = ( Hom ` S ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							 |-  ( J e. ( Subcat ` C ) -> ( Hom ` S ) = J )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveqd | 
							 |-  ( J e. ( Subcat ` C ) -> ( x ( Hom ` S ) y ) = ( x J y ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							reseq2d | 
							 |-  ( J e. ( Subcat ` C ) -> ( _I |` ( x ( Hom ` S ) y ) ) = ( _I |` ( x J y ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpoeq3dv | 
							 |-  ( J e. ( Subcat ` C ) -> ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							opeq2d | 
							 |-  ( J e. ( Subcat ` C ) -> <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							eqtrd | 
							 |-  ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. )  |