Step |
Hyp |
Ref |
Expression |
1 |
|
idfuval.i |
|- I = ( idFunc ` C ) |
2 |
|
idfuval.b |
|- B = ( Base ` C ) |
3 |
|
idfuval.c |
|- ( ph -> C e. Cat ) |
4 |
|
idfuval.h |
|- H = ( Hom ` C ) |
5 |
|
fvexd |
|- ( c = C -> ( Base ` c ) e. _V ) |
6 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
7 |
6 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
8 |
|
simpr |
|- ( ( c = C /\ b = B ) -> b = B ) |
9 |
8
|
reseq2d |
|- ( ( c = C /\ b = B ) -> ( _I |` b ) = ( _I |` B ) ) |
10 |
8
|
sqxpeqd |
|- ( ( c = C /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
11 |
|
simpl |
|- ( ( c = C /\ b = B ) -> c = C ) |
12 |
11
|
fveq2d |
|- ( ( c = C /\ b = B ) -> ( Hom ` c ) = ( Hom ` C ) ) |
13 |
12 4
|
eqtr4di |
|- ( ( c = C /\ b = B ) -> ( Hom ` c ) = H ) |
14 |
13
|
fveq1d |
|- ( ( c = C /\ b = B ) -> ( ( Hom ` c ) ` z ) = ( H ` z ) ) |
15 |
14
|
reseq2d |
|- ( ( c = C /\ b = B ) -> ( _I |` ( ( Hom ` c ) ` z ) ) = ( _I |` ( H ` z ) ) ) |
16 |
10 15
|
mpteq12dv |
|- ( ( c = C /\ b = B ) -> ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) |
17 |
9 16
|
opeq12d |
|- ( ( c = C /\ b = B ) -> <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
18 |
5 7 17
|
csbied2 |
|- ( c = C -> [_ ( Base ` c ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
19 |
|
df-idfu |
|- idFunc = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. ) |
20 |
|
opex |
|- <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. e. _V |
21 |
18 19 20
|
fvmpt |
|- ( C e. Cat -> ( idFunc ` C ) = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
22 |
3 21
|
syl |
|- ( ph -> ( idFunc ` C ) = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
23 |
1 22
|
eqtrid |
|- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |