| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idghm.b |
|- B = ( Base ` G ) |
| 2 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
| 3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 4 |
1 3
|
grpcl |
|- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` G ) b ) e. B ) |
| 5 |
4
|
3expb |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` G ) b ) e. B ) |
| 6 |
|
fvresi |
|- ( ( a ( +g ` G ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) ) |
| 7 |
5 6
|
syl |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) ) |
| 8 |
|
fvresi |
|- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
| 9 |
|
fvresi |
|- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
| 10 |
8 9
|
oveqan12d |
|- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) ) |
| 11 |
10
|
adantl |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) ) |
| 12 |
7 11
|
eqtr4d |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) |
| 13 |
12
|
ralrimivva |
|- ( G e. Grp -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) |
| 14 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
| 15 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
| 16 |
14 15
|
ax-mp |
|- ( _I |` B ) : B --> B |
| 17 |
13 16
|
jctil |
|- ( G e. Grp -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) ) |
| 18 |
1 1 3 3
|
isghm |
|- ( ( _I |` B ) e. ( G GrpHom G ) <-> ( ( G e. Grp /\ G e. Grp ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) ) ) |
| 19 |
2 2 17 18
|
syl21anbrc |
|- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |