Metamath Proof Explorer


Theorem idghm

Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypothesis idghm.b
|- B = ( Base ` G )
Assertion idghm
|- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) )

Proof

Step Hyp Ref Expression
1 idghm.b
 |-  B = ( Base ` G )
2 id
 |-  ( G e. Grp -> G e. Grp )
3 eqid
 |-  ( +g ` G ) = ( +g ` G )
4 1 3 grpcl
 |-  ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` G ) b ) e. B )
5 4 3expb
 |-  ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` G ) b ) e. B )
6 fvresi
 |-  ( ( a ( +g ` G ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) )
7 5 6 syl
 |-  ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) )
8 fvresi
 |-  ( a e. B -> ( ( _I |` B ) ` a ) = a )
9 fvresi
 |-  ( b e. B -> ( ( _I |` B ) ` b ) = b )
10 8 9 oveqan12d
 |-  ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) )
11 10 adantl
 |-  ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) )
12 7 11 eqtr4d
 |-  ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) )
13 12 ralrimivva
 |-  ( G e. Grp -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) )
14 f1oi
 |-  ( _I |` B ) : B -1-1-onto-> B
15 f1of
 |-  ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B )
16 14 15 ax-mp
 |-  ( _I |` B ) : B --> B
17 13 16 jctil
 |-  ( G e. Grp -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) )
18 1 1 3 3 isghm
 |-  ( ( _I |` B ) e. ( G GrpHom G ) <-> ( ( G e. Grp /\ G e. Grp ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) ) )
19 2 2 17 18 syl21anbrc
 |-  ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) )