Description: The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | idhmeo | |- ( J e. ( TopOn ` X ) -> ( _I |` X ) e. ( J Homeo J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idcn | |- ( J e. ( TopOn ` X ) -> ( _I |` X ) e. ( J Cn J ) ) |
|
2 | cnvresid | |- `' ( _I |` X ) = ( _I |` X ) |
|
3 | 2 1 | eqeltrid | |- ( J e. ( TopOn ` X ) -> `' ( _I |` X ) e. ( J Cn J ) ) |
4 | ishmeo | |- ( ( _I |` X ) e. ( J Homeo J ) <-> ( ( _I |` X ) e. ( J Cn J ) /\ `' ( _I |` X ) e. ( J Cn J ) ) ) |
|
5 | 1 3 4 | sylanbrc | |- ( J e. ( TopOn ` X ) -> ( _I |` X ) e. ( J Homeo J ) ) |