Description: The inverse of the identity is the identity. Example 3.13 of Adamek p. 28. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invid.b | |- B = ( Base ` C ) |
|
| invid.i | |- I = ( Id ` C ) |
||
| invid.c | |- ( ph -> C e. Cat ) |
||
| invid.x | |- ( ph -> X e. B ) |
||
| Assertion | idinv | |- ( ph -> ( ( X ( Inv ` C ) X ) ` ( I ` X ) ) = ( I ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invid.b | |- B = ( Base ` C ) |
|
| 2 | invid.i | |- I = ( Id ` C ) |
|
| 3 | invid.c | |- ( ph -> C e. Cat ) |
|
| 4 | invid.x | |- ( ph -> X e. B ) |
|
| 5 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 6 | 1 5 3 4 4 | invfun | |- ( ph -> Fun ( X ( Inv ` C ) X ) ) |
| 7 | 1 2 3 4 | invid | |- ( ph -> ( I ` X ) ( X ( Inv ` C ) X ) ( I ` X ) ) |
| 8 | funbrfv | |- ( Fun ( X ( Inv ` C ) X ) -> ( ( I ` X ) ( X ( Inv ` C ) X ) ( I ` X ) -> ( ( X ( Inv ` C ) X ) ` ( I ` X ) ) = ( I ` X ) ) ) |
|
| 9 | 6 7 8 | sylc | |- ( ph -> ( ( X ( Inv ` C ) X ) ` ( I ` X ) ) = ( I ` X ) ) |