Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 . (Contributed by Peter Mazsa, 6-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idinxpssinxp | |- ( ( _I i^i ( A X. B ) ) C_ ( R i^i ( A X. B ) ) <-> A. x e. A A. y e. B ( x = y -> x R y ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inxpss2 | |- ( ( _I i^i ( A X. B ) ) C_ ( R i^i ( A X. B ) ) <-> A. x e. A A. y e. B ( x _I y -> x R y ) )  | 
						|
| 2 | ideqg | |- ( y e. _V -> ( x _I y <-> x = y ) )  | 
						|
| 3 | 2 | elv | |- ( x _I y <-> x = y )  | 
						
| 4 | 3 | imbi1i | |- ( ( x _I y -> x R y ) <-> ( x = y -> x R y ) )  | 
						
| 5 | 4 | 2ralbii | |- ( A. x e. A A. y e. B ( x _I y -> x R y ) <-> A. x e. A A. y e. B ( x = y -> x R y ) )  | 
						
| 6 | 1 5 | bitri | |- ( ( _I i^i ( A X. B ) ) C_ ( R i^i ( A X. B ) ) <-> A. x e. A A. y e. B ( x = y -> x R y ) )  |