Step |
Hyp |
Ref |
Expression |
1 |
|
idldil.b |
|- B = ( Base ` K ) |
2 |
|
idldil.h |
|- H = ( LHyp ` K ) |
3 |
|
idldil.d |
|- D = ( ( LDil ` K ) ` W ) |
4 |
|
eqid |
|- ( LAut ` K ) = ( LAut ` K ) |
5 |
1 4
|
idlaut |
|- ( K e. A -> ( _I |` B ) e. ( LAut ` K ) ) |
6 |
5
|
adantr |
|- ( ( K e. A /\ W e. H ) -> ( _I |` B ) e. ( LAut ` K ) ) |
7 |
|
fvresi |
|- ( x e. B -> ( ( _I |` B ) ` x ) = x ) |
8 |
7
|
a1d |
|- ( x e. B -> ( x ( le ` K ) W -> ( ( _I |` B ) ` x ) = x ) ) |
9 |
8
|
rgen |
|- A. x e. B ( x ( le ` K ) W -> ( ( _I |` B ) ` x ) = x ) |
10 |
9
|
a1i |
|- ( ( K e. A /\ W e. H ) -> A. x e. B ( x ( le ` K ) W -> ( ( _I |` B ) ` x ) = x ) ) |
11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
12 |
1 11 2 4 3
|
isldil |
|- ( ( K e. A /\ W e. H ) -> ( ( _I |` B ) e. D <-> ( ( _I |` B ) e. ( LAut ` K ) /\ A. x e. B ( x ( le ` K ) W -> ( ( _I |` B ) ` x ) = x ) ) ) ) |
13 |
6 10 12
|
mpbir2and |
|- ( ( K e. A /\ W e. H ) -> ( _I |` B ) e. D ) |