| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idltrn.b |
|- B = ( Base ` K ) |
| 2 |
|
idltrn.h |
|- H = ( LHyp ` K ) |
| 3 |
|
idltrn.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
eqid |
|- ( ( LDil ` K ) ` W ) = ( ( LDil ` K ) ` W ) |
| 5 |
1 2 4
|
idldil |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( ( LDil ` K ) ` W ) ) |
| 6 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
simplrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> q e. ( Atoms ` K ) ) |
| 8 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> -. q ( le ` K ) W ) |
| 9 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 10 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 12 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 13 |
9 10 11 12 2
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( q e. ( Atoms ` K ) /\ -. q ( le ` K ) W ) ) -> ( q ( meet ` K ) W ) = ( 0. ` K ) ) |
| 14 |
6 7 8 13
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( q ( meet ` K ) W ) = ( 0. ` K ) ) |
| 15 |
1 12
|
atbase |
|- ( q e. ( Atoms ` K ) -> q e. B ) |
| 16 |
|
fvresi |
|- ( q e. B -> ( ( _I |` B ) ` q ) = q ) |
| 17 |
7 15 16
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( _I |` B ) ` q ) = q ) |
| 18 |
17
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( q ( join ` K ) ( ( _I |` B ) ` q ) ) = ( q ( join ` K ) q ) ) |
| 19 |
|
simplll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> K e. HL ) |
| 20 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 21 |
20 12
|
hlatjidm |
|- ( ( K e. HL /\ q e. ( Atoms ` K ) ) -> ( q ( join ` K ) q ) = q ) |
| 22 |
19 7 21
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( q ( join ` K ) q ) = q ) |
| 23 |
18 22
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( q ( join ` K ) ( ( _I |` B ) ` q ) ) = q ) |
| 24 |
23
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( q ( join ` K ) ( ( _I |` B ) ` q ) ) ( meet ` K ) W ) = ( q ( meet ` K ) W ) ) |
| 25 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> p e. ( Atoms ` K ) ) |
| 26 |
1 12
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. B ) |
| 27 |
|
fvresi |
|- ( p e. B -> ( ( _I |` B ) ` p ) = p ) |
| 28 |
25 26 27
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( _I |` B ) ` p ) = p ) |
| 29 |
28
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( p ( join ` K ) ( ( _I |` B ) ` p ) ) = ( p ( join ` K ) p ) ) |
| 30 |
20 12
|
hlatjidm |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) ) -> ( p ( join ` K ) p ) = p ) |
| 31 |
19 25 30
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( p ( join ` K ) p ) = p ) |
| 32 |
29 31
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( p ( join ` K ) ( ( _I |` B ) ` p ) ) = p ) |
| 33 |
32
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( p ( meet ` K ) W ) ) |
| 34 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> -. p ( le ` K ) W ) |
| 35 |
9 10 11 12 2
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( p ( meet ` K ) W ) = ( 0. ` K ) ) |
| 36 |
6 25 34 35
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( p ( meet ` K ) W ) = ( 0. ` K ) ) |
| 37 |
33 36
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( 0. ` K ) ) |
| 38 |
14 24 37
|
3eqtr4rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) /\ ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( ( q ( join ` K ) ( ( _I |` B ) ` q ) ) ( meet ` K ) W ) ) |
| 39 |
38
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> ( ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( ( q ( join ` K ) ( ( _I |` B ) ` q ) ) ( meet ` K ) W ) ) ) |
| 40 |
39
|
ralrimivva |
|- ( ( K e. HL /\ W e. H ) -> A. p e. ( Atoms ` K ) A. q e. ( Atoms ` K ) ( ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( ( q ( join ` K ) ( ( _I |` B ) ` q ) ) ( meet ` K ) W ) ) ) |
| 41 |
9 20 10 12 2 4 3
|
isltrn |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) e. T <-> ( ( _I |` B ) e. ( ( LDil ` K ) ` W ) /\ A. p e. ( Atoms ` K ) A. q e. ( Atoms ` K ) ( ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) -> ( ( p ( join ` K ) ( ( _I |` B ) ` p ) ) ( meet ` K ) W ) = ( ( q ( join ` K ) ( ( _I |` B ) ` q ) ) ( meet ` K ) W ) ) ) ) ) |
| 42 |
5 40 41
|
mpbir2and |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |