| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idmhm.b |
|- B = ( Base ` M ) |
| 2 |
|
id |
|- ( M e. Mnd -> M e. Mnd ) |
| 3 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
| 4 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
| 5 |
3 4
|
mp1i |
|- ( M e. Mnd -> ( _I |` B ) : B --> B ) |
| 6 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 7 |
1 6
|
mndcl |
|- ( ( M e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) |
| 8 |
7
|
3expb |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) |
| 9 |
|
fvresi |
|- ( ( a ( +g ` M ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
| 10 |
8 9
|
syl |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
| 11 |
|
fvresi |
|- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
| 12 |
|
fvresi |
|- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
| 13 |
11 12
|
oveqan12d |
|- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 14 |
13
|
adantl |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 15 |
10 14
|
eqtr4d |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 16 |
15
|
ralrimivva |
|- ( M e. Mnd -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 17 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 18 |
1 17
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 19 |
|
fvresi |
|- ( ( 0g ` M ) e. B -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
| 20 |
18 19
|
syl |
|- ( M e. Mnd -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
| 21 |
5 16 20
|
3jca |
|- ( M e. Mnd -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) |
| 22 |
1 1 6 6 17 17
|
ismhm |
|- ( ( _I |` B ) e. ( M MndHom M ) <-> ( ( M e. Mnd /\ M e. Mnd ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) ) |
| 23 |
2 2 21 22
|
syl21anbrc |
|- ( M e. Mnd -> ( _I |` B ) e. ( M MndHom M ) ) |