Step |
Hyp |
Ref |
Expression |
1 |
|
idmhm.b |
|- B = ( Base ` M ) |
2 |
|
id |
|- ( M e. Mnd -> M e. Mnd ) |
3 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
4 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
5 |
3 4
|
mp1i |
|- ( M e. Mnd -> ( _I |` B ) : B --> B ) |
6 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
7 |
1 6
|
mndcl |
|- ( ( M e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) |
8 |
7
|
3expb |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) |
9 |
|
fvresi |
|- ( ( a ( +g ` M ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
10 |
8 9
|
syl |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
11 |
|
fvresi |
|- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
12 |
|
fvresi |
|- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
13 |
11 12
|
oveqan12d |
|- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
14 |
13
|
adantl |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
15 |
10 14
|
eqtr4d |
|- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
16 |
15
|
ralrimivva |
|- ( M e. Mnd -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
17 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
18 |
1 17
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
19 |
|
fvresi |
|- ( ( 0g ` M ) e. B -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
20 |
18 19
|
syl |
|- ( M e. Mnd -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
21 |
5 16 20
|
3jca |
|- ( M e. Mnd -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) |
22 |
1 1 6 6 17 17
|
ismhm |
|- ( ( _I |` B ) e. ( M MndHom M ) <-> ( ( M e. Mnd /\ M e. Mnd ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) ) |
23 |
2 2 21 22
|
syl21anbrc |
|- ( M e. Mnd -> ( _I |` B ) e. ( M MndHom M ) ) |