Metamath Proof Explorer


Theorem idmot

Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p
|- P = ( Base ` G )
ismot.m
|- .- = ( dist ` G )
motgrp.1
|- ( ph -> G e. V )
Assertion idmot
|- ( ph -> ( _I |` P ) e. ( G Ismt G ) )

Proof

Step Hyp Ref Expression
1 ismot.p
 |-  P = ( Base ` G )
2 ismot.m
 |-  .- = ( dist ` G )
3 motgrp.1
 |-  ( ph -> G e. V )
4 f1oi
 |-  ( _I |` P ) : P -1-1-onto-> P
5 4 a1i
 |-  ( ph -> ( _I |` P ) : P -1-1-onto-> P )
6 fvresi
 |-  ( a e. P -> ( ( _I |` P ) ` a ) = a )
7 6 ad2antrl
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` a ) = a )
8 fvresi
 |-  ( b e. P -> ( ( _I |` P ) ` b ) = b )
9 8 ad2antll
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` b ) = b )
10 7 9 oveq12d
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) )
11 10 ralrimivva
 |-  ( ph -> A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) )
12 1 2 ismot
 |-  ( G e. V -> ( ( _I |` P ) e. ( G Ismt G ) <-> ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) )
13 12 biimpar
 |-  ( ( G e. V /\ ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) -> ( _I |` P ) e. ( G Ismt G ) )
14 3 5 11 13 syl12anc
 |-  ( ph -> ( _I |` P ) e. ( G Ismt G ) )