Step |
Hyp |
Ref |
Expression |
1 |
|
0nmhm.1 |
|- V = ( Base ` S ) |
2 |
|
id |
|- ( S e. NrmMod -> S e. NrmMod ) |
3 |
|
nlmlmod |
|- ( S e. NrmMod -> S e. LMod ) |
4 |
1
|
idlmhm |
|- ( S e. LMod -> ( _I |` V ) e. ( S LMHom S ) ) |
5 |
3 4
|
syl |
|- ( S e. NrmMod -> ( _I |` V ) e. ( S LMHom S ) ) |
6 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
7 |
1
|
idnghm |
|- ( S e. NrmGrp -> ( _I |` V ) e. ( S NGHom S ) ) |
8 |
6 7
|
syl |
|- ( S e. NrmMod -> ( _I |` V ) e. ( S NGHom S ) ) |
9 |
5 8
|
jca |
|- ( S e. NrmMod -> ( ( _I |` V ) e. ( S LMHom S ) /\ ( _I |` V ) e. ( S NGHom S ) ) ) |
10 |
|
isnmhm |
|- ( ( _I |` V ) e. ( S NMHom S ) <-> ( ( S e. NrmMod /\ S e. NrmMod ) /\ ( ( _I |` V ) e. ( S LMHom S ) /\ ( _I |` V ) e. ( S NGHom S ) ) ) ) |
11 |
2 2 9 10
|
syl21anbrc |
|- ( S e. NrmMod -> ( _I |` V ) e. ( S NMHom S ) ) |