Step |
Hyp |
Ref |
Expression |
1 |
|
idomsubr.1 |
|- ( ph -> R e. IDomn ) |
2 |
|
fveq2 |
|- ( f = ( Frac ` R ) -> ( SubRing ` f ) = ( SubRing ` ( Frac ` R ) ) ) |
3 |
|
oveq1 |
|- ( f = ( Frac ` R ) -> ( f |`s s ) = ( ( Frac ` R ) |`s s ) ) |
4 |
3
|
breq2d |
|- ( f = ( Frac ` R ) -> ( R ~=r ( f |`s s ) <-> R ~=r ( ( Frac ` R ) |`s s ) ) ) |
5 |
2 4
|
rexeqbidv |
|- ( f = ( Frac ` R ) -> ( E. s e. ( SubRing ` f ) R ~=r ( f |`s s ) <-> E. s e. ( SubRing ` ( Frac ` R ) ) R ~=r ( ( Frac ` R ) |`s s ) ) ) |
6 |
1
|
fracfld |
|- ( ph -> ( Frac ` R ) e. Field ) |
7 |
|
oveq2 |
|- ( s = ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( Frac ` R ) |`s s ) = ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) |
8 |
7
|
breq2d |
|- ( s = ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R ~=r ( ( Frac ` R ) |`s s ) <-> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
12 |
1
|
idomcringd |
|- ( ph -> R e. CRing ) |
13 |
|
eqid |
|- ( R ~RL ( RLReg ` R ) ) = ( R ~RL ( RLReg ` R ) ) |
14 |
|
opeq1 |
|- ( x = y -> <. x , ( 1r ` R ) >. = <. y , ( 1r ` R ) >. ) |
15 |
14
|
eceq1d |
|- ( x = y -> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. y , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
16 |
15
|
cbvmptv |
|- ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( y e. ( Base ` R ) |-> [ <. y , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
17 |
9 10 11 12 13 16
|
fracf1 |
|- ( ph -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) ) |
18 |
|
rnrhmsubrg |
|- ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) ) |
19 |
17 18
|
simpl2im |
|- ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) ) |
20 |
|
ssidd |
|- ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
21 |
17
|
simprd |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) |
22 |
|
eqid |
|- ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) = ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
23 |
22
|
resrhm2b |
|- ( ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) /\ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) <-> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) |
24 |
23
|
biimpa |
|- ( ( ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) /\ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
25 |
19 20 21 24
|
syl21anc |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
26 |
17
|
simpld |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
27 |
|
f1f1orn |
|- ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
28 |
26 27
|
syl |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
29 |
|
f1f |
|- ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) --> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
30 |
26 29
|
syl |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) --> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
31 |
30
|
frnd |
|- ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
32 |
|
eqid |
|- ( Frac ` R ) = ( Frac ` R ) |
33 |
9 10 32 13
|
fracbas |
|- ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( Frac ` R ) ) |
34 |
31 33
|
sseqtrdi |
|- ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( Base ` ( Frac ` R ) ) ) |
35 |
|
eqid |
|- ( Base ` ( Frac ` R ) ) = ( Base ` ( Frac ` R ) ) |
36 |
22 35
|
ressbas2 |
|- ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( Base ` ( Frac ` R ) ) -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
37 |
34 36
|
syl |
|- ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
38 |
37
|
f1oeq3d |
|- ( ph -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) <-> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) |
39 |
28 38
|
mpbid |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
40 |
|
eqid |
|- ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) |
41 |
9 40
|
isrim |
|- ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) <-> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) |
42 |
25 39 41
|
sylanbrc |
|- ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) |
43 |
|
brrici |
|- ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) -> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) |
44 |
42 43
|
syl |
|- ( ph -> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) |
45 |
8 19 44
|
rspcedvdw |
|- ( ph -> E. s e. ( SubRing ` ( Frac ` R ) ) R ~=r ( ( Frac ` R ) |`s s ) ) |
46 |
5 6 45
|
rspcedvdw |
|- ( ph -> E. f e. Field E. s e. ( SubRing ` f ) R ~=r ( f |`s s ) ) |