Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpval.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpval.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpval.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpval.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpval.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpval.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpval.q |
|- Q = ( Poly1 ` A ) |
9 |
|
pm2mpval.t |
|- T = ( N pMatToMatPoly R ) |
10 |
1 2
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) |
11 |
|
eqid |
|- ( 1r ` C ) = ( 1r ` C ) |
12 |
3 11
|
ringidcl |
|- ( C e. Ring -> ( 1r ` C ) e. B ) |
13 |
10 12
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) e. B ) |
14 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|- ( ( N e. Fin /\ R e. Ring /\ ( 1r ` C ) e. B ) -> ( T ` ( 1r ` C ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) ) |
15 |
13 14
|
mpd3an3 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` C ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) ) |
16 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
17 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
18 |
1 2 11 7 16 17
|
decpmatid |
|- ( ( N e. Fin /\ R e. Ring /\ k e. NN0 ) -> ( ( 1r ` C ) decompPMat k ) = if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) ) |
19 |
18
|
3expa |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` C ) decompPMat k ) = if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) ) |
20 |
19
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) = ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) |
21 |
20
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. Ring ) -> ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) |
22 |
21
|
oveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) ) |
23 |
|
ovif |
|- ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) = if ( k = 0 , ( ( 1r ` A ) .* ( k .^ X ) ) , ( ( 0g ` A ) .* ( k .^ X ) ) ) |
24 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
25 |
8
|
ply1sca |
|- ( A e. Ring -> A = ( Scalar ` Q ) ) |
26 |
24 25
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> A = ( Scalar ` Q ) ) |
27 |
26
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> A = ( Scalar ` Q ) ) |
28 |
27
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( 1r ` A ) = ( 1r ` ( Scalar ` Q ) ) ) |
29 |
28
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` A ) .* ( k .^ X ) ) = ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) ) |
30 |
8
|
ply1lmod |
|- ( A e. Ring -> Q e. LMod ) |
31 |
24 30
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) |
32 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
33 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
34 |
8 6 32 5 33
|
ply1moncl |
|- ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
35 |
24 34
|
sylan |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
36 |
|
eqid |
|- ( Scalar ` Q ) = ( Scalar ` Q ) |
37 |
|
eqid |
|- ( 1r ` ( Scalar ` Q ) ) = ( 1r ` ( Scalar ` Q ) ) |
38 |
33 36 4 37
|
lmodvs1 |
|- ( ( Q e. LMod /\ ( k .^ X ) e. ( Base ` Q ) ) -> ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( k .^ X ) ) |
39 |
31 35 38
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( k .^ X ) ) |
40 |
29 39
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` A ) .* ( k .^ X ) ) = ( k .^ X ) ) |
41 |
27
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( 0g ` A ) = ( 0g ` ( Scalar ` Q ) ) ) |
42 |
41
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` A ) .* ( k .^ X ) ) = ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) ) |
43 |
|
eqid |
|- ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) |
44 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
45 |
33 36 4 43 44
|
lmod0vs |
|- ( ( Q e. LMod /\ ( k .^ X ) e. ( Base ` Q ) ) -> ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( 0g ` Q ) ) |
46 |
31 35 45
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( 0g ` Q ) ) |
47 |
42 46
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` A ) .* ( k .^ X ) ) = ( 0g ` Q ) ) |
48 |
40 47
|
ifeq12d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> if ( k = 0 , ( ( 1r ` A ) .* ( k .^ X ) ) , ( ( 0g ` A ) .* ( k .^ X ) ) ) = if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) |
49 |
23 48
|
eqtrid |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) = if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) |
50 |
49
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. Ring ) -> ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) |
51 |
50
|
oveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) ) |
52 |
8
|
ply1ring |
|- ( A e. Ring -> Q e. Ring ) |
53 |
|
ringmnd |
|- ( Q e. Ring -> Q e. Mnd ) |
54 |
24 52 53
|
3syl |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Mnd ) |
55 |
|
nn0ex |
|- NN0 e. _V |
56 |
55
|
a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> NN0 e. _V ) |
57 |
|
0nn0 |
|- 0 e. NN0 |
58 |
57
|
a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> 0 e. NN0 ) |
59 |
|
eqid |
|- ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) |
60 |
35
|
ralrimiva |
|- ( ( N e. Fin /\ R e. Ring ) -> A. k e. NN0 ( k .^ X ) e. ( Base ` Q ) ) |
61 |
44 54 56 58 59 60
|
gsummpt1n0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) = [_ 0 / k ]_ ( k .^ X ) ) |
62 |
|
c0ex |
|- 0 e. _V |
63 |
|
csbov1g |
|- ( 0 e. _V -> [_ 0 / k ]_ ( k .^ X ) = ( [_ 0 / k ]_ k .^ X ) ) |
64 |
62 63
|
mp1i |
|- ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ ( k .^ X ) = ( [_ 0 / k ]_ k .^ X ) ) |
65 |
|
csbvarg |
|- ( 0 e. _V -> [_ 0 / k ]_ k = 0 ) |
66 |
62 65
|
mp1i |
|- ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ k = 0 ) |
67 |
66
|
oveq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( [_ 0 / k ]_ k .^ X ) = ( 0 .^ X ) ) |
68 |
8 6 32 5
|
ply1idvr1 |
|- ( A e. Ring -> ( 0 .^ X ) = ( 1r ` Q ) ) |
69 |
24 68
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0 .^ X ) = ( 1r ` Q ) ) |
70 |
64 67 69
|
3eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ ( k .^ X ) = ( 1r ` Q ) ) |
71 |
51 61 70
|
3eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) = ( 1r ` Q ) ) |
72 |
15 22 71
|
3eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` C ) ) = ( 1r ` Q ) ) |