| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( x e. A |-> <. x , x >. ) = ( x e. A |-> <. x , x >. ) | 
						
							| 2 | 1 | fmpt |  |-  ( A. x e. A <. x , x >. e. R <-> ( x e. A |-> <. x , x >. ) : A --> R ) | 
						
							| 3 |  | opex |  |-  <. x , x >. e. _V | 
						
							| 4 | 3 1 | fnmpti |  |-  ( x e. A |-> <. x , x >. ) Fn A | 
						
							| 5 |  | df-f |  |-  ( ( x e. A |-> <. x , x >. ) : A --> R <-> ( ( x e. A |-> <. x , x >. ) Fn A /\ ran ( x e. A |-> <. x , x >. ) C_ R ) ) | 
						
							| 6 | 4 5 | mpbiran |  |-  ( ( x e. A |-> <. x , x >. ) : A --> R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) | 
						
							| 7 | 2 6 | bitri |  |-  ( A. x e. A <. x , x >. e. R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) | 
						
							| 8 |  | df-br |  |-  ( x R x <-> <. x , x >. e. R ) | 
						
							| 9 | 8 | ralbii |  |-  ( A. x e. A x R x <-> A. x e. A <. x , x >. e. R ) | 
						
							| 10 |  | mptresid |  |-  ( _I |` A ) = ( x e. A |-> x ) | 
						
							| 11 |  | vex |  |-  x e. _V | 
						
							| 12 | 11 | fnasrn |  |-  ( x e. A |-> x ) = ran ( x e. A |-> <. x , x >. ) | 
						
							| 13 | 10 12 | eqtri |  |-  ( _I |` A ) = ran ( x e. A |-> <. x , x >. ) | 
						
							| 14 | 13 | sseq1i |  |-  ( ( _I |` A ) C_ R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) | 
						
							| 15 | 7 9 14 | 3bitr4ri |  |-  ( ( _I |` A ) C_ R <-> A. x e. A x R x ) |