Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( x e. A |-> <. x , x >. ) = ( x e. A |-> <. x , x >. ) |
2 |
1
|
fmpt |
|- ( A. x e. A <. x , x >. e. R <-> ( x e. A |-> <. x , x >. ) : A --> R ) |
3 |
|
opex |
|- <. x , x >. e. _V |
4 |
3 1
|
fnmpti |
|- ( x e. A |-> <. x , x >. ) Fn A |
5 |
|
df-f |
|- ( ( x e. A |-> <. x , x >. ) : A --> R <-> ( ( x e. A |-> <. x , x >. ) Fn A /\ ran ( x e. A |-> <. x , x >. ) C_ R ) ) |
6 |
4 5
|
mpbiran |
|- ( ( x e. A |-> <. x , x >. ) : A --> R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
7 |
2 6
|
bitri |
|- ( A. x e. A <. x , x >. e. R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
8 |
|
df-br |
|- ( x R x <-> <. x , x >. e. R ) |
9 |
8
|
ralbii |
|- ( A. x e. A x R x <-> A. x e. A <. x , x >. e. R ) |
10 |
|
mptresid |
|- ( _I |` A ) = ( x e. A |-> x ) |
11 |
|
vex |
|- x e. _V |
12 |
11
|
fnasrn |
|- ( x e. A |-> x ) = ran ( x e. A |-> <. x , x >. ) |
13 |
10 12
|
eqtri |
|- ( _I |` A ) = ran ( x e. A |-> <. x , x >. ) |
14 |
13
|
sseq1i |
|- ( ( _I |` A ) C_ R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
15 |
7 9 14
|
3bitr4ri |
|- ( ( _I |` A ) C_ R <-> A. x e. A x R x ) |